

CLIMATIC VARIABILITY AND ITS EFFECTS ON SORGHUM PRODUCTION IN NIGERIA, 1980-2021 (A REVIEW).

Adeagbo B. A. and Idisi P. O

Department of Agricultural economics, University of Abuja, FCT, Nigeria.

Abstract

The study examined the relationship between Climatic variability and sorghum yield in Nigeria. The analysis was done on the data of sorghum yield and Climatic variability from 1980 to 2021. The trends were shown during the rainfall season with the effect of climatic variability on sorghum production. It was revealed that sorghum production suffered significant yield reduction when the rains were high. Tests (unit and diagnostic) were conducted at the preliminary stage, with the usage of a time series variables. The adjusted R² value of 86.62% suggested that rainfall, temperature and relative humidity jointly explain a significant part of the variation in Sorghum yield. The findings further showed that sorghum is a drought resistant crop in the study area; despite the decline in annual rainfall, sorghum yield was increasing as a result of other factors(-4.181885 temperature, and -177.8620 relative humidity). The study thus, recommended the provision of early warning weather information to farmers; use of climate-resilient varieties, high and early maturing cultivars and fertilizer management to improving the productivity of sorghum in the study area.

Key words: Sorghum, production, limatic variability

INTRODUCTION:

Rainfall is considered the primary input for crop yield in Sub-Saharan Africa, any significant variability in the amount of annual rainfall could have an equally significant impact on agricultural production (Ati et al.,2009). Rainfall shows a more complex structure over time and space. The rainfall is highly variable both in amount and distribution across regions and seasons. The Intergovernmental Panel on Climate Change License 4.0 International License (IPCC, 2001) pointed out that rainfall in Sub-Saharan Africa exhibits high inter-decadal variability, a pattern of continuous aridity since the late 1960s. The degree to which rainfall amounts vary across an area or through time is an important characteristic of the climate of an area. This subject area in meteorology/climatology is called rainfall variability (Nouaceur and Murarescu, 2016). Impacts of rainfall variability are felt among farmers in many regions and developing countries including Nigeria. Rainfall variability constitutes a serious adverse socio-economic and environmental problem in Nigeria. It has resulted into seasonal drought, flood, soil erosion, climate change, biodiversity loss among others (Adejuwon and Odekunle, 2006). The natural resources base on which farmers depend on are altered, traditional socioeconomic livelihoods stressed and the potential for future agricultural development are affected by rainfall variability. Moreover, over the past years concerns have grown on increased rainfall variability across seasons resulting in large yield variability and thus becoming an apparent determinant on the performance andadaptation of sorghum varieties (Traore et al., 2016). Meteorological data have shown that rainfall pattern in Nigeria has changed in the past decades. Oladipo (1995) reported that decline in the rainfall in Nigeria started in the beginning of the 1960s when a decade of relatively wet years ended. Fluctuations in rainfall and other

manifestations of the impacts of climate change are direct threats to the livelihoods of Nigerians, and indeed a direct threat to farmers. As rainfall variability increases, its impact on livelihoods of indigenous farmers bites harder. Some of the consequences of this are that farmers are forced to cultivate more lands to marginally increase vield to make up for the shortfall (Agwu and Okhimamhe, 2009). Total annual rainfall at a location is influenced by several variables including the frequency of rainfall events, the duration of the rainy period and the intensity of rainfall of individual events. Inhomogeneities in the annual rainfall therefore reflect changes in these contributory variables. Adejuwon et al. (1990) fitted linear trends to the annual rainfall series of several locations in Nigeria for the entire period of available data which, in some cases, began in 1922. Olaniran (1991) analyzed the fluctuations in the series of rain days of three rainfall categories (low, moderate and heavy intensity). On the other hand, Dammo et al. (2015) examined quantitative analysis of rainfall variations in north- eastern region of Nigeria based on the standard climatic normal periods. Apart from this, assessment of the trends and changes in different categories of rainfall variability and its effects on the yield of sorghum in Potiskum Local Government Area (LGA), Yobe State, Nigeria appears in the literature.

Sorghum (Sorghum bicolor L. Moench) is a local grain cultivated predominantly in the semiarid savannah and grassland areas of Northern Nigeria and other parts Ejeh and Ikpe 11 of the world. Sorghum is viewed as a possible replacement crop for corn cultivated for grain and silage, in part due to sorghum's lower input requirements and costs, and its drought tolerance. It is nutritionally rich and serves as a staple food in most parts of Nigeria. The grain has assumed commercial relevance lately, especially in the food and beverage industry. It has been found to be a valuable ingredient next to malted barley used in the beverage industry. Sorghum is an annual grass, 5–7 feet tall, similar in appearance to maize (corn). Through breeding efforts, newer varieties now have 2-3 dwarf genes, resulting in a plant 2-4 feet tall and easier to harvest. The most extensively grown and bestknown sorghum species in Nigeria is vulgare and S. bicolor (L.) Moench., locally called guineacorn,. Both varieties can be white or yellow (Food and Agriculture Organization, 2012). Sorghum requires rainfall of about 600-1,000 mm for a duration of at least five months spread over eighty rainy days (Odjugo, 2009). That means where rainfall totals fall below 600 mm, effective sorghum production will be affected. It also implies that sorghum production will also be affected where the amount of rainfall exceeds the required maximum. The development of the crop takes 110 to 170 days, and is frequently considered to have 3 stages: emergence, floral initiation to flowering, and flowering to physiological maturity. The crop thrives better under dry and cool conditions. Sorghum is a thermophilic (26°C-40°C), drought-resistant plant, which grows slowly at 16-20°C, and stops growing under 14°C. Its productivity is dependent on quantity of rains during pre-sowing season and water holding capacity of soil (Iren, 2004). Sorghum is widely grown both for food and as a feed grain. It plays a significant role in food security in northern Nigeria. The stems are used for fuel and building fences and local huts, hence, the reason for its wide cultivation in northern Nigeria. Nigeria must double its production capacity and equally address the challenges facing the agricultural sector, particularly those associated with rainfall variability in order to meet the high demand of sorghum. According to Schaefer (2001), crop yields are affected by climatic variables, uneven rainfall distribution and prolonged arid period which lead to further development of soil erosion and loss of fertile soil.

Result and conclusion

Table 1: contains ARDL co-integration test results and critical values for F-Statistic are presented in Pesaran (2001).

Note: k shows the number of explanatory variables. On the bases of F-test at 5%, levels of probability with the critical values stated below

which are less than the F-calculated of 27.61707, we accept the null hypothesis and conclude that the regression line for crop yield is statistically insignificant.

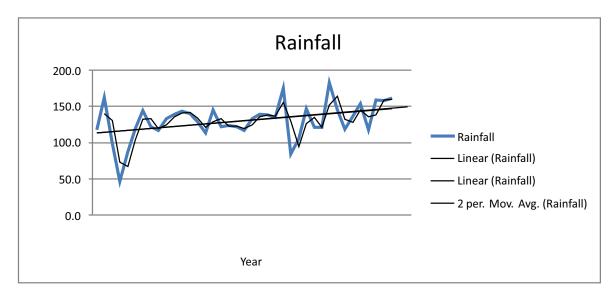
As seen in Table 1, the calculated F statistic values are above the critical values. This implies that there is a long-run relationship between the mentioned variables in the period covered. Long term coefficients calculated according to the estimation results of ARDL model are shown in Table 2. The results of long run estimates are presented in Table 2. The results show that the rainfall has a negative and significant impact on the sorghum yield, in the long run. The bottom part of Table 2: contains diagnostic test results of the selected ARDL model. The adjusted R2 value of 86.62% suggests that rainfall,

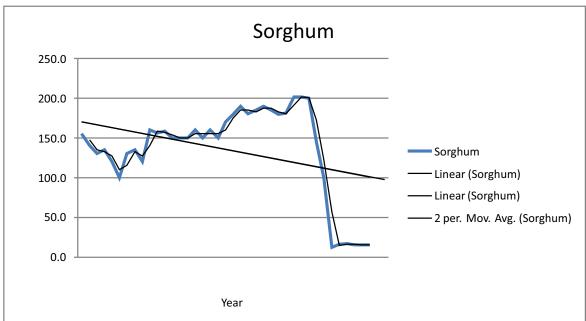
temperature and relative humidity jointly explain a significant part of the variation in Sorghum yield. Next are the results of the short run ARDL estimate are presented in Table 3: The coefficient of temperature implies that increase in temperature, will cause a decrease of 418.18% in yields of Sorghum in the long run in Nigeria. However, the results show that the rainfall has a negative and significant impact on the yield of Sorghum, in the long run. The coefficient of rainfall implies that an increase of 1% in rainfallleads to a decrease of 5.83% on Sorghum yield, in the long run in North Central. The coefficient of relative humidity implies that an increase of 1% in relative humidity leads to an increase of 177.86% on Sorghum yield.

Table 1

ARDL Co-	Value	k			
integration					
Test Results					
Test statistic					
F Statistics	27.61707	3			
Critical Value Bounds (Peseran 2001)					
Significance	I0 Bound	I1			
		Bound			
10 %	3.38	4.02			
5%	3.88	4.61			
1%	4.99	5.85			

Table 2


Long-Run	ARDL		Estimates	
Dependent variable is Sorghum				
Regressor	Coefficient		T-statistics	
			(Probability	
)	
RAF	-0.058	346	-0.302553	
			(0.7645)*	
TEMP	-4.181885		-0.834327	
			(0.4112)**	
REH	-177.8620		-	
			1.741109(0.	
			0926)*	
Diagnostic test statistics				
R2		0.898754		
Adj.R2		0.866210		
F-statistic		27.61707		
		(0.000)	0000)	


Table 3

Short-run ARDL Estimate Dependent variable				
is Sorghum				
Variable	Coefficient	T-statistics		
		(Probability)		
(SORG(-1))	0.978678	15.48792(0.00		
		00)		
(SORG(-2))	0.960916	14.51000(0.00		
		00)		
(RAF)	-0.058346	-0.302553		
		(0.7645)		
(RAF(-1))	-0.090284	(0.6454)		
(TEMP)	-4.181885	-0.834327		
		(0.4112)		
(TEMP(-1))	0.440821	0.082931(0.93		
		45)		
(REH)	-177.8620	-		
		1.741109(0.09		
		26)		
(REH(-1)	-123.6337	-1.210265		
		(0.2363)		
С	-26.71921	-		
		0.182976(0.85		
		61)		

SORGHUM'S YIELD (1980-2021)

Recommendations and conclusion

It is important for the Ministries of Agriculture and other relevant agencies to ensure the propagation of early warning weather information to farmers. This, in conjunction with the availability sorghum varieties that show resilience during climate adversity must be encouraged for planting. It is also necessary to boost the enhancement of high and early maturing cultivars while taking into cognizance the practice of fertilizer management to improving the productivity of sorghum in the study area.

REFERENCES

- Adejuwon JO, Balogun EE, Adejuwon SA (1990). On the annual and seasonal patterns of rainfall fluctuations in sub-Sahara west Africa. International Journal of Climatology 10(1):839-646.
- Adejuwon JO, Odekunle TO (2006). Variability and the Severity of the "little Dry Season" in southwestern Nigeria. Journal of Climate 19(3):483-493.
- Agwu J, Okhimamhe AA (2009). Gender and climate change in Nigeria: A study of four communities in north-central and south-easternNigeria. Heinrich Böll Stiftung, Nigeria. Availableat:
- https://ng.boell.org/sites/default/files/uploads/ 2013/10/ gender climate change in nigeria.pdf
- Amaza P, Abdoulaye T, Kwaghe P, Tegbaru A (2009). Changes in household food security and poverty status in Prosab area of southern Borno State, Nigeria. IITA, Ibadan, Nigeria.
- Ati OF (2006). Rainfall characteristic in drought-prone sudano-sahelian zone of Nigeria. Unpublished Ph.D Dissertation. Department of Geography, Ahmadu Bello University, Zaria, Nigeria.
- Ati OF, Stiger CJ, Iguisi EO, Afolayan JO (2009). Profile of rainfall changes and variability in the Northern Nigeria, 1953 - 2002. Journal of Environmental and Earth Sciences 1(2):58-63.
- Audu A (2016). An assessment of farmers' adaptation strategies to climate change in parts of Yobe State, Nigeria. An unpublished Msc. Thesis submitted to the Department of Geography, Faculty of Science, Ahmadu Bello University Zaria, Nigeria.
- Brazel SW, Balling Jr, RC (1986). Temporal analysis of long-term atmospheric moisture levels in Phoenix, Arizona. Journal of Applied Meteorology and

- Climatology 25(2):112-117.
- Dammo MN, Abubakar BSU, Sangodoyin AY (2015). Quantitative analysis of rainfall variations in Northeastern region of Nigeria. Journal of Agricultural and Crop Research 3(5) 67-72.
- Food and Agricultural Organization (FAO) (2006). The State of Food and Àgriculture https://www.fao.org/3/a0800e/a0800 e.pdfFood and Agricultural Organization (FAO) (2012). Food and Agricultural Organisation Statistical Database. Available at http//faostat.fao.org.accessed on 20 September 2020.
- Food and Agricultural Organization (FAO) (2019). Moving forward on food loss and waste reduction. The State of Food and Agriculture 2019. Available https://www.fao.org/3/ca6030en/ca6 030en.pdf Ikpe E (2014). Adaptation strategies to climate change among grain farmers in Goronyo Local Government Area of Sokoto State, Nigeria. An unpublished M.Sc Thesis, Department of Geography, Ahmadu Bello University, Zaria, Nigeria.
- Intergovernmental Panel on Climate Change (IPCC) (2001). IPCC, The Report of Working Group II of the Intergovernmental Panel on Climate Change Survey for Policymakers pp. 879-884. Iren L (2004). Sorghum and millets in cultivated plants, primarily as food
 - Nouaceur, Z., & Murărescu, O. (2016). Rainfall variability and trend analysis of annual rainfall in North Africa. International Journal of Atmospheric Sciences, 2016.
 - Olaniran, O. (1991).J. Rainfall anomaly patterns in dry over Nigeria. years International journal of climatology, *11*(2), 177-204.

APPE NDIX

Null Hypothesis: LNS has a unit root Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=0)

	_	t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-1.055432	0.9234
Test critical values:	1% level	-4.219126	
	5% level	-3.533083	
	10% level	-3.198312	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(LNS)

Method: Least Squares

Date: 01/21/23 Time: 13:45 Sample (adjusted): 1981 2023

Included observations: 38 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LNS(-1)	-0.087432	0.082840	-1.055432	0.2985
C	0.551587	0.464897	1.186470	0.2434
@TREND("1980")	-0.010175	0.006110	-1.665237	0.1048
R-squared	0.075498	Mean de	pendent var	-0.060526
Adjusted R-squared	0.022669	S.D. depo	endent var	0.366532
S.E. of regression	0.362354	Akaike ii	nfo criterion	0.883264
Sum squared resid	4.595506	Schwarz	criterion	1.012548
Log likelihood	-13.78203	Hannan-	Quinn criter.	0.929262
F-statistic	1.429105	Durbin-V	Vatson stat	1.964692
Prob(F-statistic)	0.253157			

 2^{ND}

Null Hypothesis: D(LNS) has a unit root Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=9)

	t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic	-6.104549	0.0001

Test critical values: 1% level -4.226815

5% level -3.536601 10% level -3.200320

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(LNS,2)

Method: Least Squares

Date: 01/21/20 Time: 13:46 Sample (adjusted): 1982 2023

Included observations: 37 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
$\overline{D(LNS(-1))}$	-1.046723	0.171466	-6.104549	0.0000
C	0.102004	0.130832	0.779657	0.4410
@TREND("1980")	-0.008218	0.005884	-1.396736	0.1715
R-squared	0.522913	Mean de	pendent var	0.002703
Adjusted R-squared	0.494849	S.D. dep	endent var	0.523071
S.E. of regression	0.371768	Akaike ii	nfo criterion	0.936509
Sum squared resid	4.699181	Schwarz	criterion	1.067124
Log likelihood	-14.32543	Hannan-Quinn criter.		0.982557
F-statistic	18.63289	Durbin-V	Watson stat	1.995091
Prob(F-statistic)	0.000003			

^{*}MacKinnon (1996) one-sided p-values.