

CHARACTERIZATION AND ERODIBILITY EVALUATION OF SOILS OF MINNA METROPOLIS IN SOUTHERN GUINEA SAVVANA ZONE OF NIGERIA

^aMOHAMMED,T, ^bMUNTAKA, H.A ^cF.D.HARUNA, ^dRAYMOND, E. AND ^cSALIHU, M. Y

**dDepartment of Soil Science and Land Management,
Federal University of Technology Minna
based Agricultural Research Council of Nigeria Plot 223D Cadastral Zone B6 Mabushi, Abuja
based Department of Soil Science, faculty of Agriculture,
Federal University Dutsinma, Katsina State.
based Department of Horticulture, Niger State College of Agriculture
Mokwa, Niger State, Nigeria

Corresponding author and Email: tetengi4me@gmail.com

ABSTRACT

The study was aimed to evaluate and characterize the erodibility of soils of Minna Township, Niger State Nigeria. Three profiles were sunked in the study area using free survey technique. Soil samples were collected from profile pits based on horizon differentiation and were subjected to routine laboratory analysis. Data generated were analyzed statistically using coefficient of variation. The result indicated that sand particle was predominant over other fine fractions as determined in both water and calgon in all the pedons. Soil pH ranged from 6.35 to 6.90 across the pedons. Organic matter (O.M) had mean value of 1.73%, 1.49% and 2.12% in pedons 1, 2 and 3. Cation exchange capacity (CEC) and available Zn were generally low while available Fe was high in all the studied pedons. The dispersion ratio (DR) ranged from 64.34% to 90.69% and clay flocculation index (CFI) ranged from 9.31% to 35.66% in pedons 1, 2 and 3. The soil pH, CEC, DR and CDI had low variation among horizons of each pedon soil pH and OM correlated positively ($\geq r = 0.190$, $\leq r = 0.44$) with available Fe and Zn. Organic matter correlated negatively with DR, CDI and CFI. Hence the soils were erodible therefore sustainable management practices must be adopted to ensure sustainable productivity and environmental protection in the studied area.

Keywords:-Characterization, Erodibility, Profile pits, Clay dispersion index

INTRODUCTION

The importance of any soil management system lies in the extent to which it can sustain agricultural production without adverse effect on soil water and environment. This soil management and conservation may not be effective unless the soil is reliably, characterized, classified, evaluated and interpreted with regard to land use (Ogunkunle, 2005).

Soil characterization pave way to soil survey and land use planning. It was well take into account the texture organic matter content, cation exchange capacity, acidity and available phosphorus.

Soils are usually affected and sometimes destroyed by the forces of rainfall and wind causing a phenomenon known as Erosion. Rainfall is the real agent of soil erosion by water in the tropics, by virtue of its role as the source of water or the only form of precipitation contributing to hydrologic cycle. Soil changes soil properties especially physical properties mainly because it removes surface soil rich in organic materials and exposes lower soil layers. Soil are degraded because of erosion but

already degraded soils have a higher erosion risk. It is therefore difficult to separate which is the initial cause. Erosion causes the reduction in infiltration and water storage capacity, nutrient and organic matter content, soil depth, production, vegetation growth and biodiversity (Ogunkunle,2005).

Soil erosion is one of the most severe forms of land degraded in the world (Nanna, 2016; Solan and Lal, 2011). More than 56% of land degradation is caused by erosion raising a global concern on land productivity (Elirehema, 2011). The problems associated with erosion include economic, political, social and environmental which result due to on site and off site damages. Soil erodibility can be determined using various soil erodibility indices based on soil characteristics. Different workers have employed erodibility indices like clay flocculation index (Igwe and Udegbunam, 2008; Oguike and Mbagwu, 2009; Chris Ementonu and Owerenmadu, 2011) to assess the soil erodibility. Erodibility varies with soil texture aggregates stability, shear strength, soil structures, infiltration capacity, soil depth, bulk density, soil organic matter and chemical composition (Agassi and Badford, 2009).

Therefore there is need to provide the erodibility data which will enable land users such as Agriculturist, Engineers, Town planners to know the areas that are prone to erosion. This will enable them to provide control measures and embrace sustainable land use practices that will help to check the menace of erosion in future.

Soil erosion causes great havoc to our immediate environment to the destruction of likes and valuable properties worth a reasonable amount of money; hence leaving people as victims of its operation. Minna township is not an exception of the menace of this commotion causing losses. Hence, soil characterization and erodibility evaluation of soils in Minna are

considered necessary.

MATERIALS AND METHODS Description of the study Area.

The study was carried out on Minna in Chanchaga Local Government Area of Niger state, North Central Nigeria. It lies between latitude 9° 32' 14.356" N and longitude 6°27'53.418" E on elevation of 199-205 m above sea level. The geology of the study area 15 undifferentiated basement Complex rocks.Ojanuga, 2006. The vegetation Is Southern Guinea Savanna Zone of Nigeria, characterized with distinct wet and.dry seasons. Mean annual rainfall for Minna is 1,200 mm with 90% of the rains usually falls between the Months of June and August. Mean daily temperature rarely falls below 22 °C with Peaks of 40°C and 36°C in Months of February-March and November - December respectively Adeboye et al, 2009. Dominant soil type is Typicplinthustalfs/ HapicPlinthosols (Lawal et al, 2012) cultivation of rice, maize, Cowpea and tam of Subsistence level is a common practice in the community.

Site Selection

The first site was located behind college of Education Minna-(profile A) The coordinates of this site was N 06° 50.446 and E 09 33.345, with an elevation of 195m. Minna Murtala Park was designated tube the second site (profile B): 11 has the coordinate of N 6 325 and E09"46.169' with an elevation of 1.99m. The third profile pit was located at Army barracks Minna. The coordinate was N 06° 52.76' and E 09° 41.192'with an elevation of 201m.

Soil Sampling

A Profile pit was dug on each of the selected sites. Soil Samples were collected based on horison differentiation according to Schoeneberger *et al* (2012) guidelines. A total of

15 Soil Samples were collected from the three Profile pits. The soil Samples were subjected to routine and Special laboratory analyses.

Laboratory Analyses

Particle size distribution was determined by Bouyoucous hydrometer method (Gee and Or, 2002). Soil pH was measured electrometrically using glass electrode pH meter in a solid water ratio of 1:2.5 (Thomas, 1996). Total nitrogen was determined by the micro-KJeldahl digestion technique Method (Bremner, 1996). Exchangeable bases were determined by the neutral ammonium acetate procedure buffer at pH 7.0 (Thomas, 1982). Exchangeable acidity was got by a method described by Mclean, 1982). Total Carbon was analyzed by wat digestion (Nelson and Sommers, 1996). Phosphorus was determined by Bray 1 Method according to the procedure of (Olsen and Summers 1996) Phosphorus was determined by Bray| Method according to the procedure of (Olsen and Sommers 1982). Cation exchange capacity was determined using neutral ammonium acetate leachate method (Summerand miller, 1996) Available micronutrients (Fe and (Zn) were extracted by DiethyleneTriaminePenta Acetic acid (DTPA) asdescribed by sablemedhin and Tage (2000) and all these Micronutrients were determined using atomic absorption Spectrophotometer.

The day-dispersion indices were calculated as follows:-

clay dispersion ratio (DR) = $\{ (\% \text{ silt} + \text{clay}) (H2O) \} / \%$

Silt + clay (calgon) x 100

Clay dispersion Index (CDI)=15 clay (H2O) (l. clay (calgon)×100.

Clay flocculation index (CF1)=[1.clay (H2O)]/ clay (H2)) clay (Calgon) × 100 The higher the CDR and CDI the more the ability of the soil to disperse while the higher the CFI, the better aggregated the soil. Clay dispersion ratio was used to determine the erodibility of the soils in which greater than 15% are erodible and less than 15% are not credible (middleton-2011).

Statistical Analyses.

The data generated were analyzed statistically using the coefficient of variations as described by Wilding *et al* (1994) to determine degree of variations among horizons of each pedon. However, the correlation matrix was used to determine the relationship among the selected properties of the Soil. Genstat Statistical Software version 811 were used to run the statistical analysis.

3.0 Result and Discussion 3.1 Soil Particle Distribution

The result (Table 1) of the particle size distribution showed that sand particles as determined in both water and calgon dominated over other fractions of soil in all the pedons. The sand particles as determined in water and calgon had low variation ($\geq 4.48 \% \geq 11.33 \%$) in pedons 1 and 3 while it had moderate variation (≥16.22 $\% \ge 17.73 \%$) in pedon 2. The sandiness of the study sites is not unconnected with the parent material. This conforms to the findings of (Weil and Brady, 2016) that parent material is a major determinant of soil textural composition. Sand particle increased down the pedon in no specific trend. This is contrary to the assertions of (Osujieke et al., 2017). The high sand particle in some subsurface could be associated to buried horizons as a result of runoff deposit over time. The silt and clay particles as determined in calgon was higher than those determined in water. This resulted due to the ability of calgon to disperse particles efficiently more than water.

The silt particle as determined in water had a mean of 11.03%, 20.57% and 19.49% in pedons 1,2 and 3, respectively. Silt fraction as determined in water and Calgon had low variation (11.03%) in pedon 1 and moderate to high variation ($\geq 19.49\% \geq 40.80\%$) in pedons 2 and 3. The silt fraction decreased down the pedons in no specific trend. According to the rating (10-25%) of Hazelton and Murphy (2007), silt content of the pedons was low.

However, silt particles are highly susceptible to erosion. Clay had moder- ate variation (\geq 16.37 % \geq 24.70 %) in all pedons except the pedon 2 of Calgon determined which had low variation (4.23 %). However, clay had no specific trend of increase in all the pedons. The pattern of clay distribution down the pedons indicates that the soils of pedons 1 and 2 are young. This is in line with the findings of Soil Survey Staff (2014).

Table 1: Particle Size Distribution of the Studied Pedons

Horizon	Depth	PSD in	H ₂ O		TC	PSD in	Calgon		TC
	(cm)	Sand	Silt %	Clay		Sand	Silt %	Clay	
	PI	EDON 1 (07°51.269	' and E09	° 46.693	, elevation	= 157.3m)		
A	0-35	66.4	17.28	16.32	SL	56.8	19.28	23.92	SCL
B1	35-59	68.4	11.28	20.32	SL	59.8	13.28	27.92	SCL
B2	59-117	80.4	7.28	12.32	LS	72.8	9.28	17.92	SCL
В3	117-	74.4	8.28	17.32	SL	62.8	10.28	26.92	SCL
	200								
Mean		72.40	11.03	16.57		62.80	13.03	24.17	
CV		8.74	40.80	19.94		11.33	34.54	18.62	
	PEDON	V 2 (07°5	1.269' and	d E09° 46	5.693', el	evation=			
	157.3m								
A	0-35	57.4	24.28	18.32	SL	45.8	27.28	26.92	CL
AB	35-46	71.4	14.28	14.32	SL	68.8	18.28	18.92	SCL
BA	46-56	65.4	19.28	15.32	SL	58.8	21.28	19.92	SCL
Bt1	56-62	51.4	24.28	24.32	SCL	42.8	29.28	27.92	CL
Bt2	62-112	51.4	20.28	25.32	SCL	46.8	25.28	27.92	SCL
Bt3	112-	54.4	26.28	19.32	SCL	46.8	28.28	24.92	SCL
	150								
Bct	150-	44.4	15.28	27.32	SCL	52.8	17.28	29.92	SCL
	200								
Mean		56.54	20.57	20.21		51.80	23.85	25.21	

CV		16.22	22.58	24.70		17.73	20.52	4.23	
	PEDON	N 3 (07 °5	2.076' an	d E09 °4	17.192',	elevation=			
	171.3m								
A	0-23	63.4	24.28	12.32	SL	55.8	27.28	16.92	SCL
B1	23-57	60.4	22.28	17.32	SL	50.8	24.28	24.92	SCL
B2	57-117	66.4	17.28	16.32	SL	58.8	19.28	21.92	SCL
В3	117-	66.4	14.28	18.32	SL	56.8	15.28	27.92	SCL
	200								
Mean		64.15	19.49	16.07		55.55	21.53	22.92	
CV		4.48	23.31	16.37		6.13	24.69	20.46	

PSD - particle size distribution , TC = textural class , SCL sandy clay loam , CL - clayey loam , CV- coefficient of variation , < 15 - low variability , =15-35 moderate variability , > 35 - high variability

3.2 Soil Chemical Properties and Micronutrients

The pedons (Table 2) were neutral to slightly acidic according to the ratings of Chude et al. (2011). The soil pH had a mean of 6.90, 6.48 and 6.66 in pedons of 1, 2 and 3, respectively. However, pH had low variation ($\geq 0.98 \% \geq 2.08$ %) in all the pedons. The low variation could be associated with homogeneity in parent material and similarity in climatic condition. Soil pH of the study sites could be associated to quantities of variable charge minerals, organic matter and amount and type of clay. However, the pedons were less acidic compared to the finding of Musa and Gililanbe (2017) in soils of Northeast Nigeria . Organic matter was moderate in pedons 1 and 2 and high in pedon 3 according to the ratings of Esu (1991) and Landon (1991). Organic matter had high variation (≥40.08 % ≥83.14 %) in pedons 2 and 3 and low variation (13.70 %) in pedon 1. However, organic matter content was high compared to the finding of Tekwa et al. (2011) in soils of Northern, Nigeria.

Organic matter improves the soil structure thereby reducing the erodibility rate of the soil. Total nitrogen was very high while available phosphorus was very low in all the pedons according to the ratings of Landon (1991). However, phosphorus fertilizer should be added into the soil to enhance availability of phosphorus. Total nitrogen and available phosphorus had high variation (≥40.08 % ≤83.14 %) in all the pedons except in pedon 3 where total nitrogen had low variation (5.89%). The total nitrogen was high while the available phosphorus was low compared to the finding of Tekwa et al. (2011) and Musa and Gililanbe (2017) in soils of Northeast Nigeria. The Table 2 showed that potassium was pre dominant over other cations in pedons 1 and 2 while Magnesium was predominant in pedon 3. However, Ca was low; Mg was low while Na and K were high according to the ratings of Landon (1991). This indicates that Ca and Mg are below the critical limit hence there are need to improve their status. The distribution of the

basic cation across the pedons was similar to the work of Gailyson and David (2013). Cation exchange capacity (CEC) ranged from 3.55 - 3.60 cmol/kg in pedon 1, 3.09 - 4.30 cmol/kg in pedon 2 and 3.86 3.96 cmol/kg in pedon 3. The CEC was found to be below the critical limit according to the rating of Esu (1991). Cation exchange capacity was low and had no specific trend of decrease down the pedons. This agreed to the findings of Gailyson and David (2013)

.Mulima *et al.* (2015), also reported of low CEC in soils of Northeast Nigeria . However, the CEC of the pedons were < 24 cmol / kg, this indicated that the pedons have low activity clays and highly weathered according to the finding of Soil Survey Staff (2014). The highly weathered soils are more susceptible to erosion due to the formation of coarse particle which encourages poor aggregation.

	Table 2:	Selecte	d Chemi	cal Prop	erties a	nd Micr	onutrie	nt Cont	ent of th	e Pedoi	ns		
Horiz on	Depth	pН	OM	TN	Av.P	Ca	Mg	Na	K	TEA	CEC	Fe	Zn
	(cm)	(H ₂ O)											
	PEDON	N 1 (07°5	1.269' a	nd E09°	° 46.693	', elevat	ion= 15	7.3m)					
A	0-35	6.98	2.05	0.11	1.29	0.50	0.88	0.97	0.96	2.09	3.58	20.08	1.90
B1	35-59	6.94	1.69	0.90	0.47	0.39	0.77	0.90	0.94	2.28	3.60	29.05	1.43
B2	59-117	6.81	1.69	0.76	0.93	0.41	1.06	0.99	0.99	2.17	3.60	16.23	1.08
В3	117- 200	6.85	1.48	0.70	0.36	0.37	1.03	0.90	1.02	2.13	3.55	59.38	1.20
Mean		6.90	1.73	0.62	0.76	0.42	0.94	0.94	0.98	2.17	3.58	31.18	1.40
CV		1.14	13.70	56.45	56.35	13.74	14.47	4.99	3.58	3.77	0.66	62.69	25.82
	PEDON	N 1 (07°5	1.269° a	nd E09°	° 46.693	', elevat	ion= 15	7.3m					
A	0-35	6.43	2.42	0.10	1.19	0.90	0.40	0.88	0.77	2.00	3.51	6.83	18.78
AB	35-46	6.42	2.12	0.99	0.75	0.82	0.66	0.76	0.79	2.07	3.50	23.93	3.03
BA	46-56	6.61	1.00	0.85	0.72	0.82	0.70	0.66	0.76	2.03	4.30	13.68	2.75
Bt1	56-62	6.40	1.00	0.88	0.53	0.72	0.64	0.60	0.70	2.01	3.68	26.05	0.25
Bt2	62-112	6.45	1.33	0.81	0.43	0.66	0.69	0.70	0.75	2.01	3.75	2.13	1.03
Bt3	112- 150	6.35	1.28	0.76	0.43	0.61	0.70	0.63	0.69	2.04	3.88	18.80	2.13
Bct	150- 200	6.73	1.28	0.70	0.58	0.61	0.97	0.68	0.79	1.99	3.09	35.45	0.40
Mean		6.48	1.49	0.73	0.66	0.73	0.68	0.70	0.75	2.02	3.67	18.12	4.05

CV		2.08	37.33	40.08	40.08	15.60	24.42	13.39	5.39	1.35	10.18	63.72	162.51
	PEDON	N 3 (07°5	2.076' a	nd E09	° 47.192	', elevat	tion= 17	1.3m					
A	0-23	6.65	2.59	0.99	0.45	0.77	1.02	0.99	0.88	2.21	3.86	26.93	1.03
B1	23-57	6.69	3.12	0.95	0.97	0.68	0.99	0.85	0.53	2.14	3.96	41.00	0.28
B2	57-117	6.72	1.39	0.88	0.24	0.64	0.85	0.87	0.44	2.07	3.86	21.35	0.15
В3	117- 200	6.57	1.36	0.88	1.90	0.59	1.01	0.08	0.77	2.14	3.99	4.28	0.63
Mean		6.66	2.12	0.93	0.89	0.67	0.97	0.70	0.66	2.14	3.92	23.39	0.52
CV		0.98	41.68	5.89	83.14	11.37	8.19	59.68	31.25	2.67	1.72	64.93	75.48

OM = Organic matter, TN = total nitrogen, Av P = available phosphorus, TEA = total exchangeable acidity, CEC = cation exchangeable capacity, CV = coefficient of variation, < 15 = low variability, = 15 = 35 = moderate variability, = 35 = high variability.

Available Fe had a mean of 31.18 mg/ kg in pedon 1, 18.12 mg/kg in pedon 2 and 23.39 mg/ kg in pedon 3. However, Fe content had a high variation ($\ge 62.69 \% \le 64.93 \%$) in all the pedons. The available Fe was high according to the ratings (> 10 mg/kg) of Esu (1991), and also, it was above the critical level 2.5 - 5.8 recommended by Deb and Sakal (2002). The available Fe was high compared to the findings of Mulina et al. (2015) but similar to the finding of Mustapha et al. (2010) in soils of North - east Nigeria. The level of available Fe could be associated with its availability in the parent material. Available Fe increased down in an irregular trend in pedons 1 and 2 while it decreased down in an irregular trend in pedon 3. The available Zn ranged from 1.08 - 1.90 mg/kg (mean = 1.40mg/kg) in pedon 1, 0.28 - 18.78 mg/kg (mean = 4.05mg/kg) in pedon 2 and 0.15 -1.03 mg/kg (mean 0.52 mg/kg) in pedon 3. The available Zn had a high variation (≥75.48 % ≤ 162.51 %) in pedons 1 and 2 while it had moderate variation (25.82 %) in pedon 1. However, available Zn was below the critical limit recommended by Esu, (1991) in pedon 1, moderate in pedon 2 and high in pedon 3. Generally, with the exception of Ap horizon of pedon2, the available Zn obtained from other horizons fell below the critical available level of 3.3 mg/kg as reported by Pam (1990). Available Zn of the pedons was low compared to the finding of Shehu and Jamala (2010) in soils of Northern Nigeria. Zn decreased down the pedons following no specific trend which is in line with the findings of Ahukaemere et al. (2017). However, researchers (Bassirani et al., 2011; Mustapha et al., 2011) have reported on the irregular pattern of distribution of Fe and Zn in pedons in Northeast, Nigeria. Variation of Zn and Fe among the horizons could be associated to soil pH level, organic matter level and phosphate level of the pedons .3.3 Soil

Erodibilty Indices

The dispersion ratio (DR) had a mean of 68.53 % in pedon 1, 81.04 % in pedon 2 and 70.59 % in pedon 3. However, the DR had low variation (5.55 % 8.45 %) in all the pedons. The DR is

greater than 15 % indicating that the horizons of the pedons are erodible. The DR decreased down the pedons 1 and 3 while it increased down in pedon 2. Soils with high DR are known to be weak structurally and can easily erode. Many researchers have used this index in predicting soil erosion by water (Bajracharyaet al., 1992; Igwe, 2005). Clay dispersion index (CDI) had means of 68.53 %, 81.04 % and 70.55 % in pedons1, 2 and 3, respectively. The CDI had low variation (5.04 % 10.83 %) in all the pedons . The CDI followed the similar trend like DR in dis tribution down the pedons. Clay flocculation index (CFI) ranged from 27.22-35.66 % in pedon1, 8.69-31.95 % in pedon 2 and 25.55 -30.50 % in pedon 3. However, CFI had low

variation (8.60 % 10.97 %) in pedons 1 and 3 while it had high variation (946.29 %) in pedon 1. The CFI increased down the pedons 1 and 3 in no specific trend while it decreased done the pedon 2 in no specific trend. The clay flocculation index (CFI) is also another index that shows the ability of the soils to resist dispersion in water. The CFI of the soils are low and a direct inverse of CDR. The result of the research, when compared to the finding of Oguike and Mbagwu (2009) in soils of Southern Nigeria shows that DR and CDI were high while CFI was low. Igwe and Udegbunam (2008), also reported that the DR, CDI, and CFI were high when compared to the soils of Southern Nigeria.

Table 3: Erodibility Indices used for the Pedons

Horizon	Depth (cm)	DR	CDI	CFI
	PEDON 1 (07°	51.269' and E09	° 46.693', elevation=	157.3m)
A	0-35	77.78	68.23	31.77
B1	35-59	76.70	72.78	27.22
B2	59-117	72.06	68.75	31.25
В3	117-200	68.82	64.34	35.66
Mean		73.84	68.53	31.47
CV		5.64	5.04	10.97
	PEDON 1 (07°	51.269' and E09	° 46.693', elevation=	
	157.3m			
A	0-35	78.60	68.05	31.95
AB	35-46	76.88	75.69	24.31
BA	46-56	83.98	76.91	23.09
Bt1	56-62	84.97	87.11	12.89
Bt2	62-112	86.69	90.69	9.31
Bt3	112-150	85.71	77.53	22.47
Bct	150-200	90.25	91.30	8.69
Mean		83.87	81.04	18.96
CV		5.55	10.83	46.29

PEDON 3	(07°52.076°	and E09°47	7.192	elevation=
---------	-------------	------------	-------	------------

	171.3m			
A	0-23	82.81	72.81	27.19
B1	23-57	80.49	69.50	30.50
B2	57-117	81.57	74.45	25.55
В3	117-200	68.52	65.62	30.38
Mean		78.35	70.59	28.41
CV		8.45	5.53	8,60

DR= dispersion ratio, CDI= clay dispersion index, CFI= clay flocculation index, CV = coefficient of variation, < 15 = low variability, = 15 = 35 = moderate variability, = 35 = low variability.

3.4 Correlation Matrix between Selected Soil Properties and Erodibility Indices

Table 4 shows the result of the correlation matrix between selected soil properties and erodibility indices. Sand particle had highly significant negative relationship (r=-0.674, r=-0.817, r=-0.759, r=-0.769, p=0.01) with silt, clay, DR, CDI, and CFI. Clay particle had positive relationship (r=0.526) with DR; highly significant positive relationship (r=0.743, p=0.01) with CDI and highly significant

negative relationship ($r\!=\!-0.765$, $p\!=\!0.01$) with CFI . However, DR had a positive relationship ($r\!=\!-0.836$) with CDI but a highly significant negative relationship ($r\!=\!-0.802$, $p\!=\!0.01$) with CFI . CDI had a highly significant negative relationship ($r\!=\!-0.993$, $p\!=\!0.01$) with CFI . Organic matter had a negative relationship ($r\!=\!-0.166$, $r\!=\!-0.462$, $r\!=\!-0.462$) with DR , CDI , and CFI . Igwe and Udegbunam (2008), also reported on the highly significant relationship between CFI and clay .

Table 4: Relationship between Selected Soil Properties and Erodility Indices

	Sand	Silt	Clay		DR	CDI	CFI	OM
			<u> </u>	%	←			
Sand	1							
Silt	-0.674**	1						
Clay	-0.809**	0.188	1					
DR	-0.817**	0.653**	0.526		1			
CDI	-0.759**	0.323	0.743**		0.836	1		
CFI	-0769**	-0.313	-0.765**		-0.802**	-0.993**	1	
OM	0.175	0.185	-0.445		-0.166	-0.462	-0.462	1

OM= organic matter,DR= dispersion ratio, CDI= clay dispersion index, CFI= clay flocculation index

3.5 Correlation Matrix between Selected Soil Properties and micronutrients

Table 5 shows the correlation matrix between selected soil properties and micronutrients. Available Fe had a positive relationship ($r=0.441\,,r=0.190\,,r=0.192\,)$ with pH (H_2O), OM and total nitrogen . Available Fe also had a negative relationship (r=-0.013 , r=-0.415 , r=-0.302) with clay , available phosphorus and cation exchange capacity . Available Zn correlated negatively ($r=-0.074\,,r=-0.169\,,r$

=0.329) with clay , CEC and Fe while it had a highly significant negative correlation (r=-0.656, p=0.01) with total nitrogen . However, available Zn correlated positively (r=0.308, r=-0.299, r=0.273) with pH (H_2O), OM and available phosphorus . Iyaka and Kakulu(2009), have reported that Zn correlated positively with pH and organic matter . The negative correlation between Fe and Zn was contrary to the findings of Oyinlola and Chude (2010).

Table 4: Relationship between Selected Soil Properties and Micronutrient

	Clay	pН	OM	TN	Av.P	CEC	Fe	Zn
	(%)	(H2O)		←	- (mg/kg)	(cmol/kg)	→	←
Clay	1		 → %					mg/kg
рН	-0.227	1						
(H_2O)								
OM	-0.445	0.141	1					
TN	-0.048	-0.174	-0.140	1				
Av.P	-0.183	0.028	0.236	-0.373	1			
CEC	-0.391	-0.199	-0.046	0.354	0.114	1		
Fe	-0.013	0.441	0.190	0.192	-0.415	-0.302	1	
Zn	-0.074	0.308	0.299	-	0.273	-0.169	-0.329	1
				0.656**				

OM = Organic matter, TN = total nitrogen, Av P = available phosphorus, TEA = total exchangeable acidity, CEC = cation exchangeable capacity.

4. Conclusion

The result obtained showed that the study sites were generally sandy and neutral to slightly acidic. The organic matter was moderate, total nitrogen was high, available phosphorus was very low, and CEC was low in all the sites. Available Fe was above recommended critical limit while Zn was below the recommended critical limit. However, the result as indicated by the dispersion ratio, clay dispersion index and clay flocculation index showed that the soils

of the study area are erodible.

The detrimental effects of erosion on agriculture and infra structural development in any place cannot be over emphasized. However, sustainable soil management practices such as cover cropping, conservation tillage, terracing of slopes, grassing of bare areas, windbreak and construction of conveyance have to be adapted to control the established gullies, as well as to prevent further deterioration.

REFERENCES

- Adeboye, M.K.A., Osunde, A.O., Ezenwa, M.I.S., Odofin, A.J & Bala, A. (2009). Evaluation of the of fertility status and suitability of some soils for arable cropping in the southern Guinea savanna of Nigeria. Nigeria Journal of Soil Science. 19: 115 120.
- Agassi, M. and Bradford, J. M. (2009). Methodologies for inter rill soil erosion studies. Soil TillageResearch. 49 (4): 277-287.
- Ahukaemere, C.M., Osujieke, D.N. and Ndukwu, B.N. (2017). Horizon Differences in Micronutrient Contents of Soils of the Coastal Plain Sands in Imo State, South-East Nigeria. Bulgarian Journal of Soil Science. Vol 2 (2): 112-122.
- Bajracharya, R. M., Elliot, W. J. and Lal, R. (1992). Interrill erodibility of some Ohio soils based on field rainfall simulation. Soil Science Society of America Journal. Vol. 56: 267-272.
- Bassirani, N., Abolhassani, M. and Galavi, M. (2011). Distribution of Available Micronutrients as related to the soil characteristics of Hissar; Haryana (India). Africa Journal of Agricultural Research, Vol. 6(18):4239-4242.
- Bremner , J.M. (1996) . Nitrogen total .In: Sparks , D.L. (ed) Methods of Soils Analysis , parts , Chemical method . 2nd ed , SSSA Book Series No. 5 , SSSA , Madison , W1 1085 1125.
- Chris Emenyonu , C.M. and Onweremadu , E.U. (2011). Indicators of erodibility of soils under different land use types in Imo state. *Nigerian Journal of Agriculture, Food and Environment*. 7(4):38-45.
- Chude, V.O., Malgwi, W.B., Amapu, I.Y. and Ano, A.O. (2011). Manual on Soil Fertility Assessment. Federal Fertilizer Department. FAO and National Programme on Food Security, Abuja, Nigeria. 62p
- Deb , D.L. and Sakal , R. (2002) . Micronutrients .In: *Indian Society of Soil Science* . *Indian*

- Research Institute, New Delhi. Pp. 391-403 Elirehema, Y.S. (2001). Soil Water Erosion Modeling in Select ed Watersheds in Southern Spain. IFA, ITC, Enschede.
- Esu , I. E. (1991). Detailed Soil Survey of NIHORT farm at Bunkure Kano State , Nigeria . Institute of Agricultural Research , Zaria . Pp.72
- Gailyson, Y.J. and David, O.O. (2013). Soil profile characteristics as affected by land use systems in the Southeastern Adamawa state, Nigeria. *Journal of Agriculture and Veterinary Science Vol.* 6 (4) 04-11.
- Gee, G.W. and Or, G. (2002). Particle size, In: Dane J.H. & Topp, G.C. (eds). Methods of Soil analysis. Part 4 Physical methods. Soil Science Society of America Madison, WI, Book Series No. 5 ASA and SSA 255 293.
- Hazelton, P.A. and Murphy, B. W. (2007). Interpreting soil test results: what do all the numbers mean? (2nd Ed). CSIRO Publishing Collingwood VIC 3066 Australia.151p.
- Osujieke D. N. et al., NJSS 28 (2), 2018
- Igwe, C. A. and Udegbunam, O. N. (2008). Soil properties influencing water dispersible clay and silt in an Ulti sols in Southern Nigeria. International Agro physics, 22, 319-325.
- Igwe, C.A. (2005). Erodibility in relation to water dispersible clay for some soils of eastern Nigeria. Land Degradation and Development.16,87-96.
- Iyaka ,Y. A. and Kakulu , S. E. (2009) . Copper and Zinc Con tents in Urban Agricultural Soils of Niger State , Ni geria . African Research Review Vol. 3 (3) 23-33.
- Lawal, B.A., Odofin, A.J., Adeboye, M.K.A & Ezenwa, M.I.S (2012). Evaluation of Selected Fadama Soils in Katcha Local Government Area of Niger State for Arable Cropping. Nigeria Journal of Soil Science. 22(2):104–111.
- Landon, J. R. (Ed) (1991). Booker tropical soil manual: A Handbook for soil survey and Agricultural land Evaluation in the tropics

- and subtropics, Longman Scientific and Technical, Essex, New York. 474p.
- McLean, E. O. (1982). Aluminum .In: C.A. Black (Ed.). Methods of soil analysis .Agran .No. 9. Part II .Am .Soc .Agron, Madison, Wisconsin USA.
- Middleton, H. E. (1930). Properties of soils which influence soil erosion. Tech. Bull.no. 178. Washington, DC: USDA
- Mulima, I.M., Ismaila, M., Benisheikh, K.M. and Saminu, I. (2015). Assessment of micronutrients status of soils under millet cultivation in Geidam Local Government Area of Yobestate, Nigeria, Asian Journal of Basic and Applied Sciences, Vol. 2 (2): 32-41.
- Musa, H. and Gisilanbe, S.A. (2017). Differences in physical and chemical properties of soils on Yelwa Doboratoposequence in Ganye Local Government Area, Adamawa State, Nigeria. Sky Journal of Soil Science and Environmental Management Vol. 6 (1): 011-018.
- Mustapha, S., Mamman, H.K. and Abdulhamid N.A. (2010) Status and distribution of extractable micronutrients in Haplustults in Yamaltu Deba Local Government Area, Gombe state, Nigeria. Journal of Soil Science and Environmental Management, Vol. 1 (8): 200-204.
- Mustapha, S., Voncir, N. and Abdullahamid, N.A. (2011). Status of some Available Micronutrients in the Hap licusters of Akko Local Government Area of GombeState, Nigeria. *International Journal of Soil Science*, Vol. 6: 267-274.
- Nanna, S. (1996). A geo information theoretical approach to inductive erosion modeling base on terrain mapping units. A Ph.D Wageningen Agriculture University Wageningen.
- Nelson, D.W and Sommers, L.E. (1996). Total Carbon, Or ganic Carbon Organic Matter. In: O. L. Sparks (ed). Methods of Soil Analysis Part 3, Chemical Methods. Soil

- Science Society of America Book Series Number 5. American Society of Agronomy, Madison WIE, Pp. 960 - 1010.
- Oguike, P. C. and Mbagwu, J. S. C. (2009). Variations in some physical properties and organic matter content of soils of coastal plain sand under different land use types. World Journal of Agricultural Sciences, 5 (1):63-69.
- Ogunkunle, A.O. (2005). Soil Survey and Sustainable Land Management. Invited paper at the 29th Annual Conference of Soil Science Society of Nigeria held at University of Nigeria; Abeokuta, from 6th to 10th December, 2004.
- Ojanuga, A.G. (2006). Agro ecological Zones of Nigeria Manual. FAO/NSPFP, Federal Ministry of Agricultural and Rural Development, Abuja. 124p.
- Olson, S.R and Sommers, L.E. (1982). Phosphorous.In: Methods of Soil Analysis. A. L. Page, R. H. Miller and D. R. Keeney (eds). Madison, WI. American Society of Agronomy: 1572 pp.
- Osujieke , D. N. , Imadojemu , P. E. , Ndukwu , B. N and Okeke , O. M. (2017) . Properties of Soils in relation to Soil depth , Land use and Landscape position on Soils of Ikeduru area of Imo State , Southeastern Nigeria . International Journal of Agriculture and Rural Develop ment .Vol . 20 (2): 3132-3149.
- Oyinola, E.Y. and Chude, V.O. (2010). Status of available micronutrients of the basement complex rock derived al fisols in Northern Nigeria Savannah. Tropical and Sub tropical Agro ecosystems, 12:229-237.
- Pam, S.G. (1990). Correlation and calibration studies for Zn recommendation on maize (Zea mays L.) in some upland soils of Northern Nigeria. M.Sc. Thesis, Faculty of Agriculture. ABU, Zaria, Nigeria. 127 p
- Sahlemedlin , S. and Taye , B. (2000) . Procedures for soil and plant analyses . National Soil Research Centre ,Ethiopi an Agricultural Research Organization , Addis

- Ababa, Ethiopia. 110p.
- Schoeneberger, P.J., D.A. Wysocki, E.C. Benham, and Soil Survey Staff. (2012). Field book for describing and sampling soils, Version 3.0. Natural Resources Conservation Service, National Soil Survey Center, Lincoln, NE.
- Shehu, H.E. and Jamala, G.Y. (2010). Available Zn Distribution, Response and Uptake of Rice (Oryza sativa) to Applied Zn along a Toposequence of Lake GerioFadama Soils at Yola, North eastern Nigeria. Journal of American Science, Vol. 6(11)1013-1016.
- Soil Survey Staff .(2014) . Soil Survey Field and Laboratory Methods Manual . Soil Survey Investigations Report No. 51 , Version 2.0 . R. Burt and Soil Survey Staff (ed .) . U.S. Department of Agriculture , Natural Resources Conservation Service .
- Solan, W and Lal, S. (2001). Extraction parameters and modeling soil erosion using GIS in a grid environment centre for remote imaging, sensing and processing.
- Tang, K.L. (Ed) (2004). Soil and Conservation in Beijing, China. Science Press.
- Taraba State Ministry of Environment and Urban Development (TSMEUD) 2005. Environmental impact assessment of Taraba State.
- Tekwa, I.J., Shehu, H.E and Maunde, S.M. (

- 2011). Soil nutrient status and productivity potentials of lithosols in Mubi Area, Northeastern Nigeria. Agriculture and Biology Journal of North America, Vol. 2 (6): 887-896.
- Thomas, G. W. (1982). Exchangeable Cations. In: A. L. Page; R. H. Miller and D. R. Keeney (eds.). Methods of Soil Analysis, Part 2, Chemical and Microbiological properties. Madison, Wisconsin. Pp. 159-164.
- Thomas, G.W. (1996). Soil pH and soil acidity. In: Methods of soil analysis, part 3-Chemical methods. L. D. Sparks (eds) SSSA book series 159-165.
- Weil, R.R and Brady, N.C (2016). The Nature and Properties of Soils. (15th Ed) Pearson Education. ISBN: 978 0133254488.
- Wilding , L.P. , Bouma , J. and Boss , D.W. (1994) . Impact of spatial variability on interpretative modeling.In : Quantitative modeling of soil forming processes . Bryant , R.B. and Amold , R.W. SSSA . Special Publication.No.39:61.
- Zheng, F., Stephen, D.M., Huang, C., Tanaka, D.L., Darboux, F., Liebig, M.A and Halvorson, A.D. (2004). Runoff, soil erosion and erodibility of Conservation Reserve Program land under crop and hay production. Soil Science Society of American Journal, Vol. 68 (4): 1332-1341

25