

ECONOMIC EFFECT OF CLIMATE CHANGE ON RICE PRODUCTION: THE ARDL APPROACH

Adeagbo B. A.

Department of Agricultural Economics, University of Abuja, Nigeria. E-mail: victoryadeagbo@yahoo.com

Abstract

The study examined economic effects of climate change on rice production: The ARDL approach. The study used secondary data. The trends of the climatic variables (especially rainfall) were significant on the yields of crops, Rice. Crops were selected based on crops farmers grow predominantly in the area and by extension planted during excessive rainfall (flooding). This excessive rainfall led to spikes (a sharp rise in rainfall followed by a sharp decline). It was observed that the crop yields responded to the spikes which resulted in lower yields in such years, and the effect of the spikes were felt on yields of these crops one or two more years after. The unit root and diagnostic tests were conducted on the time-series variables. The empirical results showed the ARDL Co-integration test results as having the adjusted R² of Rice (0.709) which had significant effects on yields of these various crops. Based on these findings, it is therefore recommended that climatic variability awareness campaign with science—based data and combinations of rice yields' information should be the beginning for policy making.

Key words: Climate change, rice production, ARDL

INTRODUCTION

Climate change and its effect on crop production have become a very significant menace in Agricultural activities in the world, especially in tropical countries with Nigeria fast loosing most of the rural farming environments to it which have a lot of great consequence in Agriculture. It also creates a dis-balance on crop yields with a lower predictability on what farmers produce over the years. Economic losses caused by floods are rising in Africa (Hoppe and Gurenko, 2013). Both researchers predicted that if nothing is done by way of mitigation, crop yields would drop by 50% in 2017. This scenario is already manifesting in Asia and other tropical countries where the rural farming households depend on agriculture for their livelihood. The effect of flooding reported in the last two decades have been significant and are estimated to be tens of billions of US dollars (Guha-Sapir, Hoyosi, 2013). Over 3700 flood disasters are recorded in the EM – DAT (Emergency Database), covering the period 1985 to 2014 (Emergency Event Database 2014). These events were

responsible for hundreds of thousands of deaths mostly in Asia notably (China, Thailand and Bangladesh). The floods have adversely affected billions of people mostly through loss of farms and farmlands, rendering people homeless. There was mortality, injuries, faecal-oral and rodent borne diseases, vector-borne diseases (mainly in 1tropical areas) and psychological conditions through depression, anxiety and posttraumatic stress (Ahem.2015, Huntar 2003, Few 2004, Tapsell & Tunstall 2008, Keith 2013).

There are climatic events responsible for crop yields or otherwise on the farm and notable among them is flood. A flood is an overflow of water that submerges land, low-lying villages or towns or an unusual condition affected by inflow of the tide (Guha Sapir, 2013). Flooding may occur as an overflow of water from water bodies, such as a river or lake, or sea or large natural water basins, or it may occur due to an accumulation of rainwater on saturated ground in an aerial flood. Flooding resulting from extreme hydro and meteorological events and that takes place in unexpected

magnitudes and frequencies can cause loss of lives, farmlands, livelihoods and infrastructure (Ahem, 2015). Annual floods are fast becoming part of people's lives in various regions of the world, recurring with varying magnitudes and frequencies to which people have adapted for centuries (Huntar, 2003).

Economic losses due to the effects of damaging floods have increased significantly around the world (Integrated Flood Risk Management in Asia, (2015). The frequency of natural disasters has been increasing over the years, resulting in loss of life, damage to property and destruction of the environment. Flood losses reduce the assets of households, communities and societies through the destruction of standing crops, dwellings, infrastructure, machinery and buildings, apart from the tragic loss of life. In some cases, the effect of extreme flooding is dramatic, not only at the individual household level, but also in the country as a whole (Integrated Flood Management Concept Paper, 2009). The Fourth Assessment Report (2007) of the Intergovernmental Panel on Climate Change (IPCC) predicts "heavy precipitation events, which are very likely to increase in frequency, will augment flood risk". These floods will affect life and livelihoods in human settlements in all areas such as flood plains, coastal zones, river deltas and mountains. Flooding is also increasing in urban areas, causing severe problems for poor and vulnerable people.

In Nigeria, flooding and solution to its effects are critical issues (Obeta, 2014). With history of devastating floods which affected millions of human populations and caused fiscal losses amounting to millions of Naira, the importance of exploring more realistic flood risk mitigation measures for Nigeria should be paramount. Flooding in Nigeria are Pluvial (resulting from rivers over topping their natural and manmade defense), coastal (affecting mainly the coastal areas) and flash, arriving unannounced, following a heavy storm in nature and have been a major cause of concern for rural areas and cities within the country (Andjelkovic, 2001, Bashir, 2012, Douglas, 2008, Houston, 2011). Whilst stake holders' efforts towards tackling the hazard have not yielded satisfactory results, being ad-hoc, poorly

coordinated, non-generalizable and not well established, it is, in the light of 'best practices' in flood risk reduction and 'lessons learned' from other countries experiences of flooding, that it can be argued that such stake holders' efforts are limited by lack of quality data, which are needed to systematically tackle flooding, poor perception of flooding among the general population, lack of funds and improved technology as well as poor political will power (Obeta, 2014). More so, the growing numbers of flood victims and the constrained sustainable development caused by flooding within the country suggest that much of what is known regarding flooding within the county is deficient on remedies. More critical is the subject matter of Nigeria being one of the most populous countries of the world with population size estimated at over 170 million people (World Bank 2013). Considering the theory that future population growth will decide future flood risk, the population size along with future estimate spurs for good planning to check the menace of flooding and the resultant effect on food production in any nation that must feed her population (Guha-Sapir, 2013). Benue State is proudly referred to as the 'food

basket of the nation' since the rich nutrients deposits of alluvial soils that support bumper harvest have helped farmers in producing crops on large scale. However, with the climate change and River Benue overflowing its bank, flooding has become a critical issue in recent years. Therefore, climate change and its attendant climate events (especially floods) have become what farmers will have to cope with, since it is fast becoming unpredictable to give accurate account of crop yields on farms. Farmers therefore need adequate knowledge on the nature and causes of climate change with the attendant climatic events and the various mitigation, adaptation and coping strategies to use. This of course, depends on their access to credible information sources and their capacity to apply the information. A major problem for crop production in Nigeria (at large), and Benue State (in particular), as it concerns climate change is the reduction of arable lands which arises from the incursion of sea to arable land for farming.

OBJECTIVE OF THE STUDY:

The Objective of the study is to estimate the effect of climate change on rice production

METHODOLOGY

Theoretical and empirical literature analysed the economic effect of climate change on rice production. The estimation of Effect of Climate Change on Rice Production: The multiple regression model showed:

The implicit Form of the model is stated as: $Y = \beta_0 + \beta_1 Rain + \beta_2 Temp + \beta_3 R.Hum + E_t$

Where Y = Crop Yield in Metric Tonnes (mt), (in years)

 $\beta_0 = Constant$

 β_1 - β_3 = Coefficients

 X_1 =Annual mean rainfall

X₂=Annual Mean temperature

 X_3 =Annual Mean relative humidity

 e_1 = Error term or unexplained variables

The functional form of the model will be as:

 $Y = \beta_0 + \beta_1 Rain_t + \beta_2 Temp_t + \beta_3 Rel Hum + E_t$

Where ΔY is the Total Yield is the yield of each of the crops, Rain is rainfall as measured in mm, Temp is the temperature as measured in °C, and R.Hum is the relative humidity, while t is the time trend and e

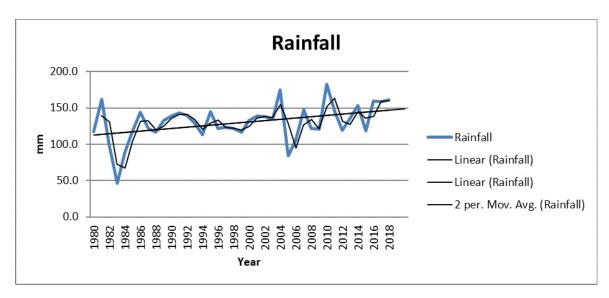
is white noise error term. The parameters are β_1 , β_2 $,\beta_3$. We have employed the Autoregressive Distributed Lag (ARDL) bounds testing approach developed by Pesaran and Shin (1999) and Pesaran, Shin and Smith (2001) to ascertain the long-run relationship between Total yield, Rainfall and Temperature. The ARDL approach has several advantages. First, The ARDL approach is that it can be used even in cases when different variables have different orders of integration. Second, when compared to the Johansen and Juselius cointegration test, the ARDL test ensures more consistent estimates in the case of small samples. Third, given that it is free of residual correlation, the ARDL test can handle the eventual phenomenon of endogeneity among variables. Fourth, short-run adjustments can be integrated with the long-run equilibrium in ARDL by deriving the error correction mechanism (ECM) via simple linear transformation without trailing the information about long-run.

The mathematical representation of the ARDL approach is as follows

$$\begin{array}{l} \Delta Y = \beta_0 + \ \beta_1 \sum_{i=1}^n \Delta \ Y_{t-1} + \beta_2 \sum_{t=0}^n \Delta \ Temp_{t-1} + \beta_3 \sum_{t=0}^n \Delta \ Rain_{t-1} + \beta_4 \sum_{t=0}^n \Delta \ Rel \ hum_{t-1} + \ \beta_5 \ \Delta \ Y_{t-1} + \beta_6 Temp_{t-1} + \ \beta_6 \ Temp_{t-1} + \beta_7 Rain_{t-1} + \beta_8 Rel. Hum_{t-1} + E_t \end{array}$$

Where Δ represents change. n is the optimum delay lengths. The existence of co-integration relationship between variables from Eq. 3 is examined by testing the significance of the lagged levels of variables using the F-statistic or Waldcoefficient test. Pesaran et al. (2001) propose testing which means that we cannot reject the absence of co-integration, against the alternative, which implies that the hypothesis of the existence of such a relationship cannot be rejected.

ARDL approach is based on two steps. First step, one is to determine the existence of a long run co-


integrating relationship among the variables by using the Wald-coefficient test or F-statistics and by comparing them with critical values set out by Pesaran et al. (2001). Pesaran et al. (2001) reported two types of critical values: lower bounds and upper bounds. The critical values for the I(0) variables are referred to as lower-bound critical values while the critical values for the I (1) variables are referred to as upper-bound critical values. If the calculated F-Statistic is higher than the upper bounds, it means the null of hypothesis of no co-integration is rejected, indicating evidence of a long-run co-integrating relationship between the

variables, regardless of the order of integration of the variables. If calculated F-statistic is below the lower bound, we cannot reject the null hypothesis of co-integration, indicating the absence of a long-run equilibrium relationship. If calculated F-statistic is between lower and upper bounds, a conclusive inference could not be made without knowing the order of integration of the underlying regressors. The second step is estimation of long-run and short-run coefficient. According to the estimation results of ARDL calculate long term coefficients. In order to investigate the short-run relationship between the variables, the error correction model based on the ARDL approach is established as follows.

$$\Delta Y = Y_0 + Y_1 \sum_{t=1}^{n_1} \Delta \ Y_{t-1} + Y_2 \sum_{t=0}^{n_2} \Delta \ Temp_{t-1} + Y_3 \sum_{i=0}^{n_3} \Delta \ Rain_{t-1} + \ Y_4 \sum_{i=0}^{n_4} \Delta \ Rel. \ Hum_{t-1} + Y_5 ECM_{t-1} + E_t$$

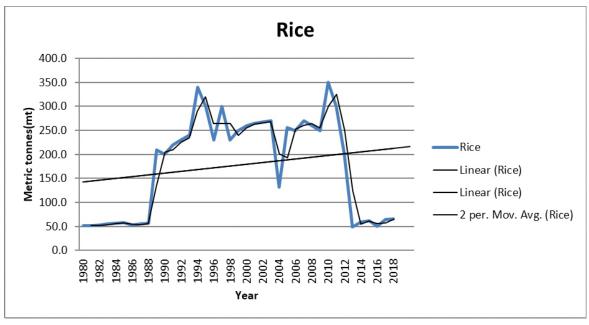


Table 1 contains ARDL co-integration test results. Critical values for F-Statistic are presented according to critical bounds table of Pesaran (2001). On the bases of F-test at 1%,5%, 10% levels of significance, with the critical values stated below which are less than the F-calculated of 11.02056, we reject the null hypothesis and conclude that the regression line for crop yield is statistically significant. From the economic theory it means explanatory variables (rainfall, temperature and relative humidity) are influential factors that can explain a larger percentage of rice yield for the period (1980-2018) in Benue State and it is good for forecasting. The bottom part of Table 2 contains diagnostic test results of the selected ARDL model. The adjusted R² value of 70% suggests that rainfall, temperature and relative humidity jointly explain a significant part of the variation in rice yield and 30% was explained by unknown variables that were not included in the model. This means the predictive power of this model is very high and good for policy making. The

Durbin Watson test showed that there is no serial correlation in our rice yield model. Next are the results of the short run ARDL estimate presented in Table 3 The effect of climatic variables on rice yield was estimated using the Autoregressive Distributed Lag (ARDL) approach. In this study, the increase in precipitation had a positive effect, while the increase in temperature has a negative effect on rice yield. The coefficient of temperature implies that an increase of 1% in temperature will cause a decrease of 15.05% in yields of Rice in the long run in Benue State. However, the results show that the rainfall has a positive and significant effect on the yield of Rice, in the long run. The coefficient of rainfall implies that an increase of 1% in rainfall leads to a decrease of 55.0% on Rice yield, in the long run in Benue State. The coefficient of relative humidity implies that an increase of 1% in relative humidity leads to a decrease of 456.88% on Rice yield. The bottom part of Table 1 contains diagnostic test results of the selected ARDL model.

Table 1:	Value	k
ARDL Co -	,	
integration		
Test Results		
Test statistic		
F Statistics	11.02056	3
Critical Value	Bounds (Pesaran 20	001)
Significance	I0 Bound	I1 Bound
10 %	3.38	4.02
5%	3.88	4.61
1%	4.99	5.85

10 %	3.38	8		4.02		
5%	3.88	8		4.61		
1%	4.99	9		5.85		
Table 2: Long -Run ARDL Estimates						
Dependent variable is Rice						
Regressor	Coefficient		T-statistics			
			(Proba	bility)		
RAF	-0.550007		-1.101481(0.2801)*			
TEMP	-15.05546		-1.147287			
			(0.2610)**			
REH	-456.8786		-1.655619(0.1090)*			
Diagnostic test statistics						
\mathbb{R}^2		0.779848				
Adj.R ²		0.709085				
F-statistic		11.02056(0.000000)				
Durbin-Watson		2.327882				

Note: * and ** indicate significance levels of 5% and 10%, respectively.

Table 3: Short -run ARDL Estimate Dependent					
variable is Rice					
Variable	Coefficient	T-statistics			
		(Probability)			
RICE(-1))	0.881952	9.291311			
		(0.0000)			
RICE(-1)	0.84997	8.645599(0.0000)			
TEMP	-15.05546	-			
		1.147287(0.2610)			
TEMP(-1)	0.713514	0.051381(0.9594)			
REH	-456.8786	-			
		1.655619(0.1090)			
REH(-1)	-1.185350	-			
		0.004386(0.9965)			
С	302.3004	0.941910(0.3533)			

Source: Data Computed (2019)

Conclusion:

From the findings of this study, it can be concluded that farmers in the study area are challenged by flooding which has effected significantly on crop yields. A statistical significant relationship existed between climatic events (flooding) and crop production in the study area. This means flooding is a very important parameter and having adverse effects to crop production in Benue state. Notwithstanding, farmers engaged in adaptation strategies in the area but these were not effective due to constraints faced by them in the employment of these strategies. The decrease in crop yields is a threat to crop production in the state in particular and Nigeria in general.

Recommendations

Based on these findings, the following recommendations are made:

- 1. Climatic variability (change) awareness campaign with science based data and combination of crop yields' information should be the beginning for policy making and implementation targeted at effective dissemination to reduce the effect of flooding on crop production.
- 2. A large number of farmers in Benue State are poor and adaptive capacity is limited. Therefore, there is need to provide relief services for them to be able to adapt to the effects of flooding. Furthermore,

- Agricultural Extension Service should play a critical role of informing farmers on how best to adapt to flooding effects. This will require some further training on the part of the extension personnel in order to build their capacity to effectively strengthen farmers' capacities. In line with this, the extension agents must in turn strengthen the confidence of farmers by helping them to express faith in such adaptive measures for sustainable farming activities.
- 3. The socio-economic factors influence or drive adaptation strategies in Benue State, therefore, it will be important that the Government policies should be aimed at raising the economic status of farmers such as level of education of the household heads and improving access to education for farmers. This will help in empowering the labour force on farms and reduce the dependency rate. Also, it will be necessary to raise the low weekly spending of farmers by providing sustainable loans through the establishment of Agricultural-based microfinance banks that will be charged with the provision of these loans. In addition, Farmers should be encouraged to join cooperative societies and organise one in area where none exists since these co-operative societies often help in raising farmers' income.

REFERENCES

- Ahern, M., Kovats, R.S., Wilkinson, P., Few, R., & Matthies, F. (2005). Global health effects of floods: epidemiologic evidence. Epidemiologic reviews, 27(1), 36-46.
- Ahem (2015), Huntar (2003), few (2004), Tapsell & Tunstall (2008), Kelth (2013). Climate and its variability 2FG-R Paris: Technical Document in Hydrology, Unesco Paris 100.
- Ali M, Chaudhry MA (1990). International farm efficiency in Pakistan Punjab: a frontier production function study. J. Agric. Econ. 41(3):42-74.
- Ali D. & Hamidu S. (2012). climate change and its issues, the effect on the environment in Nigeria. Journal of environmental sciences and resource management 5(2), 140-150
- Ali D. & Hamidu, S. (2014). Environmental hazard: climate change and flooding, the effect on the built environment in Nigeria. Journal of Environmental Sciences and Resources Management, 6(1), 136-144.
- Ali P.I.O. (2005). Flood damage assessment in Makurdi town, Unpublished M.Sc. Thesis, Department of Geography, Benue State University, Makurdi, Nigeria.
- Amaze PS and Olayemi JK (2002). Analysis of technical in efficiency in food crop production in Gombe State, Nigeria. J. Appl. Econ. Lett. 9(1):51-54.
- Andjelkovic. (2001). Guide line on non-structural measures in urban flood management 1HP-V. Paris: Technical Document in Hydrology, Unesco, Paris, 50.
- Anttila-HughcsJK, Hsiang SM (2013) Destruction, disinvestment, and death: Economic and fan man lasses following environmental disaster
- ASEAN (2016 | ASEAN Economic Community

- Chart book (2016). The Association of Southeast Aldan Nations (ASEAN) Secretarial, Jakarta
- Chukwuone, N.A (2009). "Analysis of conservation and Utilization of Non-wood forest products in southern Nigeria: Implication for forest Management and poverty Alleviation". *A Ph.D Thesis* Submitted to the Department of Agricultural Economics, University of Nigeria, Nsukka.
- Cohen; 2004, Holton; 1998, Sarter; 2000, Urban growth in developing inundation modeling. Journal of Hydrology, 387, modeling packages. Environmental Agency. Bristol. Countries: a review of current trends and a caution regarding existing forecast. World Development, 32 (1), 23-51.33-45
- CRED, Guha-Sapir D (2017) EM-DAT: The Emergency Events Database, universities catholique de Louvain (UCL), WWW.EMDAT.BE, Brussels. Belgium
- CRED, UNIDDR (2015) The human cost of weather related disasters 1995-2015, Centre for Research on the Epidemiology of Disasters (CRED) and The United Nations Office for Disaster Risk Reduction (UNISDR).
- Crichton, D. (1999) Birkmann; 2006, Balbi.2012. The Risk Triangle. In I. J, Natural Disaster Management (102-103). London: Tudor Rose.
- Crossman, M., Richardson, D. and Milne, J. (2006).

 Proceedings of the In Civil Engineers. A partnership approach to Managing Flood Risk. Civil Engineering. Journal, 159 (2):41-45.
- De Moel, H., van Alphen, J., Aerts, J.C. (2009). Flood maps in Europe methods, availability and use. Natural Hazards and Earth System Sciences, 9, 289-301. DEFRA (Department for Environment Food and Rural Affairs) (2013). Desktop review of 2D hydraulic disaster resilient societies. (pp. 9-54). Hong Kong: United Nations University Press.

- Dell M, Jones BF. Olken BA (2012). Temperature shocks and economic: growth: Evidence from the last half century. American Economic Journal; Macro-economics 4(3):66 95
- Dell M. Jones BF. Olken BA (2011). What do we learn from the weather? The new climate economy literature. Journal of Economic literature 52(31:740798
- Douben, J.K. (2006). Characteristics of River floods and Flooding: A Global Overview, 1985-2003. Journal, 59:59-521.
- EA (2007), Gupta (2007), Jha (2012), Chen (2009), Jeffers (2013). Attributes of Urban flood Evidence from the last half century. American Economic Journal; Macro-economics 4(3):100-105
- El Hadri H, Mina D, Rabaud 1 (2017). Natural disasters and countries' export: New insights from a new (and an old) database. LED Working Papers / DR LEO 2503. Orleans Economics Laboratory / Laboratoire d'Economic d'Orleans (LEO), University of Orleans
- Emergency Event Database (2014). Natural Disasters:
 Research on the Epidemiology of DiastersRED. School of public Health Universities
 Journal 50.290-292
- Flood plain Management in Australia, (1998). In Disaster risk Management Study Guide for DIM 605: Module 2, Bloemfontein: University of the Free State.
- Gassebner M, Keek A, Teh R (2010). Shaken, not stirred: The effect of disasters on international trade- Review of International Economics 18(2):351368
- Green, Donna (2009). 'An assessment of climate change effects and adaptation for the Torres Strait Islands, Australia'. Climatic Change. 102 (3-4): 405-433.
- Guha-Sapir D, Hoyois P, Wallcmaeg P. Below R

- (2016). Annual disaster statistical review 2016: The numbers and trends, brussels, CRED
- Guha-Sapir, D., Hoyosi. P.H., Below, R. (2013).

 Mitigation: An Evaluation of Barriers and Challenges Annual Disaster Statistical Review 2012: The based on Evidence from Ireland. Applied Numbers and Trends.

 Brussels: CRED; 2013. Geography, 37,44-51
- Hanson, k., Danielson, M. and Ekenberg, L. (2007). A Framework for Evaluation of Flood Management Strategies. Journal, 86 (3):465-480.
- Hassan, (2013), Lauber (1996), Ward and Robinson (2000). Flooding and its forms. The school of hyrology University of Kwazulu Nataly South Africa 150(5): 60-475
- Hoeppe P. and E.N. Gurenko (2013). "Scientific and Economic Rationales for Innovative Climate Insurance solutions" Climate policy 6:607-20
- Integrated Flood Risk Management in Asia (2015). Flood as a risk management, Journal,53(6): 264-279.
- IPCC (2007). Climate Change 2007: The Physical Science Basis (Summary for Policy), IPCC, G e n e r a h t t p //: www.nigeriaclimatechange.org.
- IPCC (2017). Evidence of Pluvial floods: Journal of hydrology, 400, modeling packages.
- Irohibe, I.J and Agwu, E.A. (2014). Assessment of Food Security Situation among Farming Households in Rural Areas of Kano State, Nigeria: Journal of Central European Agriculture. 15(1): 94-107.
- Jalil, A, Mahmood, T. and Idress, M 2013, Tourism-Growth Nexus in Pakistan: Evidence from ARDL Bounds Tests, Economic Modeling, vol 35, 185-191

- Jones BF, Olken BA (2010) Climate shocks and export. The American Economic Review 100(2):454 439
- Jonkman (2008). Flood Modeling in Netherlands. The Joshiel American Economic Review 50(5): 200-205.
- Keith (2013) Flooding and effects. The Asian Economic Review 10(3): 460-479
- Keith, C. (1999). Getting started with Geographic Information System. Upper Saddle River, New Jersey, USA: Prentice-Hall Inc.
- Kundzewicz, Z.W., Budhakooncharoen, S., Bronstert,
 A., Hoff, H., Lettenmaier, D., Menzel, L. and
 Schulze, R. (2002). Natural Resources forum:
 Coping with Variability and change: Floods
 and Droughts. Journal, 26 (4): 263-274.
- Lind, N., Mahesh, P. and Nathwani, J.(2008). Structural Safety: Assessment and Affording the Control of Flood Risk. Journal 31 (2): 143-147.
- Lindsell, K. M. and Prater, S. C. Abstract on "Assessing Community Effects of National Disasters": 176-178 (electronic), National Hazard Review vol. 4, No. 4, November, 1, 2003.
- Loayza NV, Olaberria E, Rigolini J. Cbristiaensen L (2012) Natural disasters and growth: Going beyond the averages. World Development 40(7):1317 1336
- Lobell, D.B., Burke, M.B., Tebaldi, C., Mastrandrea, M.D., Falcon, W.P. & Naylor, R.L. (2008)
 Prioritizing Climate Change Adaptation
 Needs for Food Security in 2030. *Science*, 319(5863):607–610.
- Maddison, D. (2006) The Perception of and Adaptation to Climate Change in Africa. *CEEPA Discussion Paper* No. 10. Centre for Environmental Economics and Policy in Africa. Pretoria, South Africa: University of

Pretoria.

- Manfred O.J and Nilsen O.A (2011). Global Digital Elevation Model (ASTER GDEM), Environmental Research letters, 3(2), 3-10.
- Makama, S. A., Murtala, N. and Abdul, Z. (2011). Economic Analysis of Sesame production in Taura Local Government Area, Jigawa Stae. *Savannah Journal of Agriculture*, 6(2): 6-12.
- Marchiori L, Maystadt JF Schumacher I (2012). The effect of weather anomalies on migration in sub-Saharan Africa. Journal is Environmental Economic and Management 63(3):365-374
- Mc Carl et al (2008) Implications of environmental issues and Land economics 50(2):150 B2
- McDermott CM. Nilsen OA (2014) Electricity prices, river temperatures, and cool in water scarcity LAND Economic 90(1):131 H8
- Mendelsohn R. Emanuel K, Chonabayashi (2011).

 The effect of climate change on hurricane damages in the United State. World Bank Policy Retouch working paper; no WPS 5561. License: CC BY 3.0 IGO
- Mendelsohn, R., Morrison, W., Schlesinger, M., & Andronova, N. (2000) *Country Specific Effects of Climate Change*. The World Bank Group.
- Mertz, O., Mbow, C. and Reenberg, A. (2009).

 Farmers' Perceptions of Climate Change and Agricultural Adaptation Strategies in Rural Sahel. Environmental Management, 43: 804-816.
- Miguel E, Satyanath S. Sergenti E (2004) Economic shocks and civil conflict: An instrumental variable approach. Journal of Political Economy 112 (1):725 733
- Milliman JD. Broadus JM. and Frank G. (1989).

- Environmental and Economic Effect of Rising Sea Level and Subsiding Deltas: The Nile and Bengal Examples. In *Bangladesh Ouest.* **1:**11-12.
- Mohapatra, K.P. and Singh, D.R. (2003). Flood Management in India. Journal, 28:131-143.
- Mozny, M., Tolasz, R., Nekovar, J., Sparks, T., Trnka, M. & Zalud, Z. (2009) The Effect of Climate Change on the Yield and Quality of *Saaz hops* in the Czech Republic. *Agricultural and Forest Meteorology*, 149:913-919
- Mustafa, D. (2002). Linking Access and Vulnerability: Perceptions of Irrigation and Flood Management in Pakistan. Journal, 34 (1):94-105.
- Ninno, D.C., Dorosh, A.P. and Smith, C.L.(2003).

 Public Policy, Markets and Household
 Coping Strategies in Bangladesh: Avoiding a
 Food Security Crisis Following the 1998
 floods. Journal, 31 (7):1221.
- Nott, J., (2006) Extreme Events: A Physical Reconstruction and Risk Assessment, Cambridge University Press, New York.
- Obeta, C. M. (2014). Institutional Approach to Flood Disaster Management in Nigeria: Need for a preparedness plan. British Journal of Applied Science & Technology, 4(33), 4575-4890.
- Obeta, M.C. (2009). Extreme river flood events in Nigeria: A geographical perspective of Nigerian. Journal of Geography and the Environment, 1, 170-179.
- Parker, J.D. (2000). Floods: Tangler and Francis, National Academy Press, Asian Disaster Preparedness Centre, Thailand.
- Pendo-Edna (2011) Market Efficiency Analysis of Jatropha value chain: Case study of Mondule and Arumeru Districts. A Dissertation submitted in partial fulfilment of the requirement for the degree of Master of Science in Agricultural Economics of the Sokoine University of Agriculture, Morgoro,

- Tanzania.
- Pesaran M, H, Shin,Y and Smith R.J 2001, Bounds Testing Approaches to the Analysis of Level Relationships, Journal of Applied Econometrics,vol.6, no 2 108-119.
- Rashid H. and Pramanik MAH. (1990). Visual Interpretation of Satellite Imagery for Monitoring Floods in Bangladesh. Springer-Verlag New York Inc. U.S.A.
- Rashid, F.S. (2000). The Urban Poor in Dhaka City: Their Struggles and coping strategies during the floods of 1998. Journal, 24 (3): 240-253.
- Ripples (2018). Benue and Consequences of flooding 180 (DPR) 195-210.
- Sinclair, S. and Pegram, G. 2003. A Flood Now casting System for the eThekwini Metro, Volume 1: Urgent Now casting using Radar-An Integrated Pilot Study. Water Research Commission (WCR). Silowa Printers South Africa.
- Smith, K .and Ward, R. 1998. Floods: Physical processes and Human Effects. John Wiley and son. England.
- Smit, B. & Skinner, M. (2002) Adaptation Options in Agriculture to Climate Change: A Typology. *Mitigation and Adaptation Strategies for Global Change*, 7: 85-114.
- Tapsell, S. M., & Tunstall, S. M. (2008). "I wish I'd never heard of Banbury": The relationship between 'place' and the health effects from flooding. Health & place, 14(2), 133-154.
- Tapsell, S. M., Penning-Rowsell, E. C., Tunstall, S. M., & Willson, T.L. (2002). Vulnerability to flooding: health and social dimensions.
 Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 360 (1796), 1511-1525.

- Wolfe, D.W., Schwartz, M.D., Lakso, A.N., Otsuki, Y., Pool, R.M. & Shaulis, N.J. (2005) Climate Change and Shifts in Spring Phenology of Three Horticultural Woody Perennials in North-Eastern USA. *Journal of Biometeorology*, 49:303-309.
- World Bank (2012) That flood 2011: rapid assessment for resilient recovery and reconstruction planning: Overview (English). World Hank, Washington, DC, http://document.worldbank.org/curated//en/6778/overview
- WMO. (2008) International meteorological vocabulary, 2nd edition. Publication No. 182.

 A v a i l a b l e a t:

 http://meteoterm.wmo.int/meteoterm
 /ns?g=TPlostart=direct=yesrelog=yes
- Zierogel, G (2006) Climatic Variability and change Implications for household food security AIACC working paper. No 20. An electronic publication of the AIACC project.