# YIELD ATTRIBUTES AND YIELD OF UPLAND RICE (ORYZA SATIVAL.) AS AFFECTED BY WEED MANAGEMENT STRATEGIES, SOURCE AND RATE OF BIOCHAR IN NORTHERN GUINEA SAVANNA

Tabat, Y. K<sup>1</sup>., D. B. Ishaya<sup>2</sup>., H.N. Kura<sup>2</sup> and I.Y. Amapu<sup>3</sup>

<sup>1</sup>Department of Agric. Education, Kaduna State College of Education Gidan Waya

<sup>2</sup>Department of Agronomy, Ahmadu Bello University, Zaria

<sup>3</sup>Department of Soil Science, Ahmadu Bello University, Zaria

Corresponding author: yusuftabat67@gmail.com

#### ABSTRACT

Field trials were conducted during 2018 and 2019 wet seasons on the research farm of the Institute for Agricultural Research (IAR), Ahmadu Bello University Samaru, Zaria (11°11'N, 07°38'E 686m above sea level) in the Northern Guinea Savanna ecological zone of Nigeria. The experiment was carried out to evaluate the performance of upland rice (Oryza sativa L.) as affected by weed management strategies, source and rate of biochar. The treatments consisted of three sources of biochar organic biomass (rice husk, groundnut shell and wood shavings), three rates of the biochar (0, 2 and 4 t ha<sup>-1</sup>) and three different weed management strategies [chemical weed control (Saflufenacil + Dimethenamid-P at 0.5 kg a.i/ha applied pre-emergence), integrated weed control method (Saflufenacil + Dimethenamid-P at 0.5 kg a.i/ha applied pre-emergence + one hand weeding at 9 WAS) and cultural weed control method (Hand weeding at 3, 6 and 9 WAS) which is the farmers' practice]. The three rates of biochar and three different weed management strategies were factorially combined and laid out as the main plot treatment. The sub-plot treatments consisted of the three sources of biochar. All the treatments were laid out in a Split-Plot Design and replicated three times. The results showed that integrated weed management gave the best weed control that enhanced performance of yield attributes such as grain weight per plant, number of grains per panicle and 1000-paddy weight which translated to higher paddy yield of 3.61 t ha<sup>-1</sup>compared to the chemical weed control. The application of biochar at 2 t ha<sup>-1</sup> recorded the highest paddy yield of 3.74 t ha<sup>-1</sup> compared to the control. Incorporation of rice husk biochar enhanced yield parameters such as number of grains per panicle and 1000-paddy weight more than other sources of biochar that translated to paddy yield of 3.18 t ha<sup>-1</sup>. The results showed that integrated weed control and application of 2 t ha<sup>-1</sup> rice husk biochar are considered most appropriate for paddy yield of upland rice at Samaru in the Northern Guinea Savanna ecological zone of Nigeria.

Key words: weed management, biochar, upland rice, yield

#### INTRODUCTION

Rice (Oryza sativa L.) is the most important food crop in the developing world and the staple food of more than half of the world's population (Rajput, 2016). It is among the major sources of employment, income and food security for farming households (FAOSTAT, 2010). Farmers find rice more

adaptable than a high input staple like maize when there is declining soil fertility because of the huge array of varieties they can switch over to every few years (Oikeh, et al., 2006). Rice has the potential of growing in virtually all the agro-ecological zones in Nigeria, as diverse as the Sahel Savanna of extreme end of Borno state and the coastal swamps of the

extreme end of southwest and south-south (Selbut, 2003). As a special staple food crop, farmers are always willing to grow it all the times no matter the constraints they are facing.

More than 700 million tonnes of paddy rice is produced annually at global level with nearly 640 million tonnes produced in Asia, representing 90% of global production (The United States Department of Agriculture, 2020). The FAO (2020) reported world milled rice production at 508.7 million tonnes in 2020 which is slightly greater than the 507.3 million tonnes of milled rice reported in 2019. Nigeria is reported as the largest paddy rice sub-Saharan Africa producer in approximately 8 million tonnes out of the Africa average of 14.6 million tonnes of paddy rice annually (USDA, 2020).

Rice production in Nigeria is limited by factors such as lack of good seeds, attack by birds, high cost and unavailability of fertilizer at the time of need, cost of pesticides and weed interference (Akintayo et al., 2011). Of all the constraints limiting the production of rice, weeds, appear to have the most deleterious effect causing between 80 to 100% reduction in potential paddy rice yield (Akobundu, 2011; Imeokparia, 2011: Lavabre, 2011). Weed control is thus important to prevent losses in yield, reduce production cost and preserve good grain quality (Rao et al., 2014). However, the choice and use of appropriate weed control method constitutes yet another constraint to farmers in rice producing regions in Nigeria. Recently, the use of biochar (a carbon-rich substance) in agriculture is gaining global acceptance because of its variously reported significant benefits which include

potential to reduce current global carbon emissions by about 10 percent thereby mitigating climate change (Woolf, 2008), improved soil fertility leading to reduced need for additional fertilizer, improved water and nutrient retention in sandy soils, reduced nutrient leaching (Atkinson et al., 2010, Downie and Van Zwieten, 2013; Pühringer, 2016), reduced weed seed viability and germinability (Major et al., 2005; Arif et al., 2012) among other benefits. Despite these attributes, utilization of biochar in Nigerian agriculture especially in the savanna region [which is characterized by very low nutrient content (Uyovbisere and Lombin, 1988)] is still low. Upland rice production under the different sources and rates of biochar and weed management systems is yet to be established in the savanna region of Nigeria which this research undertook to determine the best source and optimum rate of biochar and most efficient weed management strategy for upland rice production.

## **Materials and Methods**

Field trials were conducted during 2018 and 2019 wet seasons on the research farm of the Institute for Agricultural Research (IAR), Ahmadu Bello University Samaru, Zaria (11°11'N, 07°38'E 686m above sea level). The experiment was carried out to evaluate the yield performance of upland rice (Oryza sativa L.) as affected by weed management strategies, source and rate of biochar. The treatments consisted of three sources of biochar organic biomass (rice husk, groundnut shell and wood shavings), three rates of the biochar (0, 2 and 4 t ha<sup>-1</sup>) and three different weed management strategies [chemical weed control (Saflufenacil + Dimethenamid-P at 0.5 kg a.i/ha applied pre......

emergence), integrated weed control method (Saflufenacil + Dimethenamid-P at 0.5 kg a.i/ha applied pre-emergence + one hand weeding at 9 WAS) and cultural weed control method (Hand weeding at 3, 6 and 9 WAS) which is the farmers' practice]. The three rates of biochar and three different weed strategies were management factorially combined and laid out as the main plot treatment. The sub-plot treatments consisted of the three sources of biochar. All the treatments were laid out in a Split-Plot Design and replicated three times. The gross plot size was 3m x 3m (9m<sup>2</sup>), while net plot size was 3  $\times 1.5 \text{m} (4.5 \text{m}^2).$ 

The biochar was produced locally under low oxygen condition based on the procedure described by Srinivasarao et al. (2013) and analyzed for its chemical properties. The composite of the sampled soil before land preparation and at harvest were analyzed for physical and chemical properties. Land was harrowed twice and demarcated into mainplots and sub-plots. NERICA 8 (FARO 59) variety was used and dressed with Dress Force (Imidacloprid 20%, Metalaxyl-M 20%, Tebuconazole 2% WS) at the rate of 10g/2.5kg of rice seeds. The rice seeds were sown manually by dibbling at an intra and inter-row spacing of 20 x 20cm on flat land. The herbicide Saflufenacil + Dimethenamid-P at 0.5kg a.i. /ha was applied at one day after sowing according to the pre-emergence treatments at a pressure of 2.1kg/cm<sup>2</sup> using discharge volume 200L/ha. recommended rate of fertilizer (i.e. half of  $80 \text{kgNha}^{-1}$ ,  $30 \text{kgP}_2 \text{O}_5 \text{ha}^{-1}$  and  $30 \text{kgK}_2 \text{Oha}^{-1}$ ) was used for this research applied under 2 split applications at planting and at 5 WAS. Three hand weedings were carried out in the hand-weeded treatment at 21, 42 and 63 DAS

and one hand weeding in the integrated weed control treatment at 63 DAS. Matured panicles were harvested manually using sickle at physiological maturity prior to grain shattering. Data were collected on panicle length, number of grains per panicle, 1000-paddy weight and paddy yield per hectare as indicated below:

#### Grain weight per plant (g)

Panicles from the five tagged plants from each plot were sun-dried, threshed, winnowed and weighed using SB 16001 Mettler Toledo sensitive balance and average weight recorded.

## Number of grains per panicle

Grains from the five sampled panicles from each plot were carefully threshed and counted and the mean calculated to determine the number of grains per panicle.

## 1000-paddy weight (g)

This was determined by randomly counting 1000 rice paddies from each subplot and weighed on SB 16001 Mettler Toledo sensitive balance.

# Paddy vield (t ha-1)

The paddy yield was obtained from the net plot area of each sub plot. The rice paddies were threshed, winnowed to remove chaff and the clean paddies were weighed using SB 16001 Mettler Toledo sensitive balance and the yield expressed in tonnes per hectare (t ha-<sup>1</sup>).

Data collected were subjected to statistical analysis of variance (ANOVA) as described by Steel and Torrie (1997) using Statistical Analysis Software package. Treatment means were compared using Duncan Multiple Range Test (DMRT)(Duncan, 1955) at 5% level of probability.

#### **RESULTS**

## **Grain weight per plant (g)**

The effect of weed management strategies, rate and source of biochar on grain weight per plant of upland rice at Samaru in 2018 and 2019 wet seasons and the mean is significant (Table 1). Weed management strategy significantly affected grain weight per plant in both years and the mean. Highest grain weight per plant was significantly recorded by integrated weed control and hand weeded treatments more than chemical weed control treatment in both years and the mean.

Application of 2 t ha<sup>-1</sup> of biochar significantly increased grain weight per plant of upland rice more than all other rates in both years and the mean beyond which there was no further significant increase in grain weight per plant in 2019 and the mean but comparable grain weight per plant at 0 and 4 t ha<sup>-1</sup> of biochar were observed in 2018 (Table 1).

Source of biochar had no significant effect on grain weight per plant in both years and the mean. The interaction among all the treatments evaluated was not significant in both years and the mean.

#### Number of grains per panicle

The effect of weed management strategies, rate and source of biochar on number of grains per panicle of upland rice in 2018 and 2019 wet seasons and the mean is significant (Table 1). Significantly highest number of grains per panicle was produced by integrated weed control treatment in 2018 and the mean while integrated weed control and hand weeded methods produced significantly highest number of grains per panicle in 2019. Significantly lowest number of grains per

panicle was produced by chemical weed control treatment in both years and the mean. Application of 2 t ha<sup>-1</sup> of biochar significantly increased number of grains per panicle of upland rice more than all other rates in both years and the mean beyond which there was no further significant increase in number of grains per panicle but tended to decrease it in 2018.

Rice husk biochar and groundnut shell biochar significantly produced higher number of grains per panicle than wood shavings biochar in both years and the mean. The interaction among all the treatments evaluated was not significant in both years and the mean (Table 1).

#### 1000-paddy weight (g)

The effect of weed management strategies, rate and source of biochar on 1000-paddy weight of upland rice at Samaru in 2018 and 2019 wet seasons and the combined mean is significant (Table 2). Integrated weed control and hand weeded methods which were at par significantly recorded heaviest 1000-paddy weight in both years and the mean while chemical weed control treatment consistently recorded lightest 1000-paddy weight in both years and the mean.

Application of 2 t ha<sup>-1</sup> rate of biochar significantly increased 1000-paddy weight of upland rice more than all other rates in both years and the mean beyond which 1000-paddy weight comparable to the control was produced in 2018.

Rice husk biochar significantly produced heaviest 1000-paddy weight more than only wood shavings biochar in 2019 and the mean. There was no significant interaction among all the treatments evaluated in both years and the mean.

#### Paddy vield

Paddy yield per hectare as affected by weed management strategies, rate and source of biochar at Samaru in 2018 and 2019 wet seasons is significant (Table 2). Integrated weed control significantly gave the highest paddy yield per hectare more than other weed management strategies while chemical weed control treatment significantly gave the lowest paddy yield of rice per hectare in both years.

Application of 2 t ha<sup>-1</sup> of biochar significantly increased paddy yield per hectare more than all other rates in both years. Rice husk biochar significantly produced higher paddy yield per hectare than only wood shavings biochar in 2018.

The interaction between rate of biochar and weed management strategies on paddy yield per hectare (t ha<sup>-1</sup>) of upland rice was significant at Samaru in 2018 (Table 3). It was observed that integrated weed control treated with 2 t ha<sup>-1</sup> of biochar significantly produced the highest paddy yield per hectare while chemical weed control without biochar produced the least paddy yield per hectare.

#### **DISCUSSION**

### Effect of weed management strategies:

It was observed that grain weight per plant, number of grains per panicle, 1000-paddy weight and paddy yield were significantly reduced in the chemical weed control treatment in both years and the mean. This could be due to the vigorous growth of weed species at a later stage of the crop growth cycle recorded in the chemical weed control treatment which led to competition between the weeds and the rice plants for relatively longer period that interfered with the development and performance of yield

attributes of the rice plant. Azmi (1990) and Begum et al. (2008) reported that the growth characters and ultimately the yield of rice decreased when weeds were allowed to compete with the rice plants for space, water and nutrients for longer period. Better performance of grain weight per plant, number of grains per panicle, 1000-paddy weight and paddy yield were observed with the integrated weed control strategy probably due to the multiple weed suppression and long season weed control at pre-emergence and hand pulling at 9 WAS. Singh et al. (2002) observed that, maintaining weed free condition till maturity gave significantly higher grain vield due to increased performance of yield attributes and lower density and dry weight of weeds.

### Effect of rate of biochar:

Rate of biochar positively influenced yield components and paddy yield of upland rice in both years and the mean. It was observed that application of 2 t ha<sup>-1</sup> of biochar significantly increased grain weight per plant, number of grains per panicle, 1000-paddy weight and paddy yield. Higher doses of biochar had no further positive effect on the yield components and paddy yield. This indicated that 2 t ha<sup>-1</sup> of biochar was most appropriate for enhancing yield components of upland rice crop at Samaru. This finding is in agreement with Reichenauer et al. (2009) who found increased grain yield with the application of 2 t rice-husk-biochar ha<sup>-1</sup>.

#### Effect of source of biochar:

Rice husk biochar significantly recorded better performance of yield components and paddy yield than other sources of biochar in both years and mean. This could be due to the ability of rice husk biochar to improve the

soil properties such as decreased soil bulk density, soil strength, exchangeable Al, and soluble Fe, and increased soil pH, soil organic matter, total P, Mg, Si, CEC, exchangeable K and exchangeable Ca (Masulili and Wani, 2010). The lowest paddy yield recorded with the use of wood shavings biochar in both years could be attributed to the low chemical properties associated with it as revealed by chemical analysis (Table 4). accordance, Carvalho et al. (2016) reported that application of wood biochar did not increase yield in rice grown in aerobic soil.

#### **Treatments Interaction:**

Interaction between rate of biochar and weed management strategies on paddy yield per hectare was significant in 2018. Integrated weed control in combination with the application of biochar rate at 2 t ha<sup>-1</sup> gave the highest yield of 4.97 t ha<sup>-1</sup> in 2018. This indicated the importance of employing the right weed management strategy and appropriate rate of biochar for increased yields of upland rice.

#### **CONCLUSION**

The results showed that 2 t ha<sup>-1</sup> rice husk biochar in combination with integrated weed management is most appropriate for the enhancement of yield components and yield of upland rice at Samaru in Northern Guinea Savanna ecological zone of Nigeria.

#### **REFERENCES**

Akintayo, O.I., May Rahji., T.T. Awoyemi and A.I. Adeoti. (2011). Determinants of Yield Gap in Lowland Rice Production in North-Central Nigeria. African Journal Online Vol. 11 No. 1 (2011).

- Akobundu, I. O. (2011). Weed Control in Direct-seeded Lowland Rice under Poor water Control Conditions. Weed Research 21:273-278.
- Arif, M., K. Ali, F. Munsif, A. Ahmad, W. Ahmad and K. Naveed (2012). Effect of biochar, FYM and nitrogen on weeds and maize phenology. Pak. J. Weed Sci. Res. 18(4): 475-484.
- Atkinson, C. J., Fitzgerald, J. D., & Hipps, N. A. (2010). Potential mechanisms for achieving agriculturalbenefits from biochar application to temperate soils: a review. Plant and Soil, 337(1-2), pp.1-18.
- Azmi, M. (1990). Critical period for weed control in direct seeded rice. Proceedings of the third tropical weed science conference. Kuala Lumpur: MPPS. Pp. 75 91.
- Begum, M., Juraimi, A.S., Rajan, A. Omar, S.R.S. and Azmi, A. (2008). "Critical period competition between Fimbristylis miliacea (L.) Vahl and rice (MR 220)," Plant Protection Quarterly, 23(4): 153 157.
- Carvalho, M. T. M., Madari, B. E., Bastiaans, L., van Oort, P. A. J., Leal, W. G. O., Heinemann, A.B., da Silva, M.A.S., Maia, A.H.N., Parsons, D., and Meinke, H. (2016). Properties of a clay soil from 1.5 to 3.5 years after biochar application and the impact on rice yield. Geoderma. 276: 7-18. https://doi.org/10.1016/j.geoderma.20 16.04.013

- Duncan, D.B. (1955). Multiple range multiple F Test Biometrics, 11:1-42.
- Downie, A. & Van Zwieten, L. (2013).

  Biochar: A Coproduct to Bioenergy from Slow-Pyrolysis Technology. In: Advanced Biofuels and Bioproducts.

  Springer New York, pp. 97-117.
- FAO (2020). Food Outlook Biannual Report on Global Food Markets – November 2020. Rome https://doi.org/10.4060/cb1993en 107pp
- FAOSTAT (2010). Food and Agriculture organization Statistics the effect of crimson clover residue, synthetic nitrogen fertilizer, and their interaction on emergence and early growth of lamb squarters and sweet corn. Plant Soil 167: 227 237.
- Hayashi, K. (2016). The Role of Biochar and Prospects for its Use in Rice Production in Southeast Asia. Crop and Environmental Sciences Division, International Rice Research institute, Los Banos, Philippines. 4pp.
- Imeokparia, P. O. (2011). Control of Cut grass (Leersia hexandra) in Direct seeded Lowland Rice at Badeggi. Agronomy Seminar, Ahmadu Bello University, Zaria.
- Lavabre, E. M. (2011). The Tropical Agriculturist: Weed Control, pp.86.
- Major, J., C. Steiner, A. Ditommaso, N.P.S. Falcao and J. Lehmann. (2005). Weed composition and cover after three years of soilfertility

- management in the central Brazilian Amazon: compost, fertilizer, manure and charcoal applications. Weed Biol. Manag.5: 69–76.
- Masulili Agusalim and Wani Hadi Utomo (2010). Rice Husk Biochar for Rice Based Cropping System in Acid Soil 1. The Characteristics of Rice Husk Biochar and Its Influence on the Properties of Acid in West Kalimantan, Indonesia. Journal of Agricultural Science, 2(1): 39-47
- Oikeh, S.O., Nwilene F.E., Agunbiade T.A., Oladimeji O., Ajayi O., Semon M., Tsunematsu H. and H. Samejina (2006). Growing upland rice: a production hand book- Africa Rice Center (WARDA) Cotonou, Benin, pp 2-3.
- Pühringer, H. (2016). Effects of different biochar application rates on soil fertility and soil water retention in onfarm experiments on smallholder farms in Kenya.Master's Thesis in Environmental Science, Department of Soil and Environment,Faculty of Natural Resources and Agricultural Sciences, Swedish University of Agricultural Sciences. Uppsala 2016
- Rajput, S.S. (2016). Performance of rice varieties grown under different spacings with planting depths in rice intensification. system of Journal International of Agric, Environment and Biotechnology, 9(5):833 - 836.

- Rao, A.N., S.P. Wani and J.K. Ladha. (2014).

  Weed, management research in India an analysis of the past and outlook for future^ pp. 1 -26. In: Souvenir (1989-2014). DWR Publication No. 18.

  Directorate of Weed Research, Jabalpur, India.
- Reichenauer, T.G, Panamulla, S., Subasinghe, S., & Wimmer, B. (2009). Soil amendments and cultivar selection can improve rice yield in salt-influenced (tsunami-affected) paddy fields in Sri Lanka. Environ. Geochem. Health, 31, 573–579.
- Selbut R. Longtau (2003). Review and
  Description of Rice Production
  Systems in Nigeria: Multi-agency
  Partnerships in West African
  Agriculture. Eco-systems
  Development Organisation. Pp.9
- Singh, R.K., Sharma, S.N. Singh, R., & Pandey, M.D. (2002). Efficacy of method of planting and weed controlmeasures on nutrient removal of rice (Oryza sativa L.) and associated weeds. Crop Res., 24(3), 425-429.
- Ch., K.A., Srinivasarao, Gopinath, Venkatesh, G., Dubey, A.K., Harsha Wakudkar Purakayastha, T.J., Pathak, H., Pramod Jha, Lakaria, B.L., Rajkhowa, D.J., Sandip Mandal, Jeyaraman, S., Venkateswarlu, B. and Sikka, A.K. (2013). Use of biochar for soil health management and greenhouse gas mitigation in India: Potential and constraints, Central Institute Research for Dryland

- Agriculture, Hyderabad, Andhra Pradesh. Pp 6 -17.
- United States Department of Agriculture (2020). World Rice Production,
  Consumption and Stocks Foreign
  Agricultural Services, PSD Reports.
  Pg1.
  https://apps.fas.usda.gov/psdonline/app/index.html
- Uyovbisere, E.O. and Lombin, G. (1988).

  Nitrogen fertilizer management studies. In: Cropping Scheme Meeting p. 18. Farming Systems Research Programme. Institute for Agricultural Research, Zaria.
- Woolf, D. (2008). Biochar as soil amendment: A review of the environmental implications. Nature, 1-10.

Table 1: Effects of weed management strategy, rate and source of biochar on grain weight per plant and number of grains per panicle of upland rice at Samaru in 2018 and 2019 wet seasons

| Treatment                              | Grain weight per plant (g) |       |       | Number of grains per panicle |        |        |  |
|----------------------------------------|----------------------------|-------|-------|------------------------------|--------|--------|--|
|                                        | 2018                       | 2019  | Mean  | 2018                         | 2019   | Mean   |  |
| Weed management – W                    |                            |       |       |                              |        |        |  |
| Chemical weed control                  | $16.2b^2$                  | 14.2b | 15.2b | 121.0c                       | 109.3b | 115.2c |  |
| Hand weeding                           | 31.7a                      | 26.9a | 29.3a | 141.8b                       | 133.2a | 137.5b |  |
| Integrated weed control                | 32.9a                      | 24.8a | 28.8a | 158.6a                       | 143.1a | 150.9a |  |
| $\mathrm{SE}\pm$                       | 2.24                       | 1.28  | 1.76  | 4.54                         | 4.16   | 4.35   |  |
| Biochar rate (t ha <sup>-1</sup> ) – R |                            |       |       |                              |        |        |  |
| 0                                      | 22.3b                      | 18.0b | 20.1b | 122.9c                       | 111.0b | 116.9b |  |
| 2                                      | 30.5a                      | 24.3a | 27.4a | 157.1a                       | 141.7a | 149.4a |  |
| 4                                      | 28.1ab                     | 23.6a | 25.9a | 141.5b                       | 132.9a | 137.2a |  |
| SE±                                    | 2.24                       | 1.28  | 1.76  | 4.54                         | 4.16   | 4.35   |  |
| Biochar source – S                     |                            |       |       |                              |        |        |  |
| Rice husk                              | 29.6                       | 22.6  | 26.1  | 156.3a                       | 141.0a | 148.6a |  |
| G/nut shell                            | 27.1                       | 21.8  | 24.5  | 141.5a                       | 132.9a | 137.2a |  |
| Wood shavings                          | 24.1                       | 21.4  | 22.8  | 123.7b                       | 111.8b | 117.7b |  |
| SE±                                    | 3.69                       | 2.02  | 2.86  | 5.65                         | 5.55   | 5.60   |  |
| Interaction                            |                            |       |       |                              |        |        |  |
| R x W                                  | $NS^1$                     | NS    | NS    | NS                           | NS     | NS     |  |
| RxS                                    | NS                         | NS    | NS    | NS                           | NS     | NS     |  |
| WxS                                    | NS                         | NS    | NS    | NS                           | NS     | NS     |  |
| RxWxS                                  | NS                         | NS    | NS    | NS                           | NS     | NS     |  |

<sup>1.</sup> NS = Not significant.

Chemical weed control (Saflufenacil +Dimethanamid-P); Hand weeding (3, 6, & 9 WAS) Integrated weed control (Saflufenacil +Dimethanamid-P + Hand weeding at 9 WAS)

Table 2: Effects of weed management strategy, rate and source of biochar on 1000-paddy weight and paddy yield of upland rice at Samaru in 2018 and 2019 wet seasons

| Treatment                              | 1000-paddy weight (g) |       |       | Paddy  | Paddy yield (t ha <sup>-1</sup> ) |        |  |  |
|----------------------------------------|-----------------------|-------|-------|--------|-----------------------------------|--------|--|--|
|                                        | 2018                  | 2019  | Mean  | 2018   | 2019                              | Mean   |  |  |
| Weed management – W                    |                       |       |       |        |                                   | _      |  |  |
| Chemical weed control                  | $26.1b^{3}$           | 22.4b | 24.3b | 2.033c | 1.856c                            | 1.945c |  |  |
| Hand weeding                           | 30.0a                 | 27.0a | 28.5a | 2.985b | 2.687b                            | 2.836b |  |  |
| Integrated weed control                | 31.8a                 | 28.0a | 29.9a | 3.802a | 3.419a                            | 3.611a |  |  |
| $SE\pm$                                | 1.19                  | 1.18  | 1.19  | 0.223  | 0.244                             | 0.233  |  |  |
| Biochar rate (t ha <sup>-1</sup> ) – R |                       |       |       |        |                                   |        |  |  |
| 0                                      | 26.6b                 | 23.0b | 24.8b | 2.078c | 1.838b                            | 1.958c |  |  |
| 2                                      | 31.2a                 | 27.5a | 29.4a | 3.865a | 3.618a                            | 3.741a |  |  |
| 4                                      | 30.0ab                | 27.0a | 28.5a | 2.878b | 2.507b                            | 2.692b |  |  |
| $SE\pm$                                | 1.19                  | 1.18  | 1.19  | 0.223  | 0.244                             | 0.233  |  |  |
| Biochar source – S                     |                       |       |       |        |                                   |        |  |  |

<sup>2.</sup> Means followed by same letter(s) within the same column and treatment group are not significantly different at 5% level of probability using DMRT.

| Rice husk        | 31.9   | 28.2a  | 30.0a  | 3.257a  | 3.093 | 3.175 |
|------------------|--------|--------|--------|---------|-------|-------|
| G/nut shell      | 28.9   | 25.2ab | 27.1ab | 2.945ab | 2.477 | 2.711 |
| Wood shavings    | 27.1   | 24.1b  | 25.6b  | 2.618b  | 2.392 | 2.505 |
| $\mathrm{SE}\pm$ | 1.24   | 1.23   | 1.24   | 0.229   | 0.262 | 0.246 |
| Interaction      |        |        |        |         |       |       |
| RxW              | $NS^2$ | NS     | NS     | *1      | NS    | NS    |
| RxS              | NS     | NS     | NS     | NS      | NS    | NS    |
| WxS              | NS     | NS     | NS     | NS      | NS    | NS    |
| RxWxS            | NS     | NS     | NS     | NS      | NS    | NS    |

<sup>\*=</sup> significant at 5% level of probability.

Chemical weed control (Saflufenacil +Dimethanamid-P); Hand weeding (3, 6, & 9 WAS) Integrated weed control (Saflufenacil +Dimethanamid-P + Hand weeding at 9 WAS)

<sup>2.</sup> NS = Not significant.

<sup>3.</sup> Means followed by same letter(s) within the same column and treatment group are not significantly different at 5% level of probability using DMRT.

Table 3: Interaction between rate of biochar and weed management on paddy yield per hectare of upland rice at Samaru in 2018

| Weed management         | Rate of biochar (t ha <sup>-1</sup> ) |        |        |  |  |  |
|-------------------------|---------------------------------------|--------|--------|--|--|--|
|                         | 0                                     | 2      | 4      |  |  |  |
| Chemical weed control   | $1.483g^{1}$                          | 3.167d | 1.450g |  |  |  |
| Hand weeding            | 2.071f                                | 3.455c | 3.430c |  |  |  |
| Integrated weed control | 2.680e                                | 4.972a | 3.730b |  |  |  |
| SE±                     |                                       | 0.070  |        |  |  |  |

<sup>&</sup>lt;sup>1</sup>Means followed by same letter(s) within the same column and treatment group are not significantly different at 5% level of probability using DMRT.

Chemical weed control (Saflufenacil +Dimethanamid-P); Hand weeding (3, 6, & 9 WAS) Integrated weed control (Saflufenacil +Dimethanamid-P + Hand weeding at 9 WAS)

Table 4: Chemical properties of Biochar at Samaru during 2018 and 2019 wet seasons

| Chemical properties                  |       | 2018  |       |   | 2019  |       |       |  |
|--------------------------------------|-------|-------|-------|---|-------|-------|-------|--|
|                                      | RHB   | GSB   | WSB   | • | RHB   | GSB   | WSB   |  |
| pH in water (1:2:5)                  | 10.2  | 9.86  | 9.16  |   | 10.1  | 9.58  | 8.91  |  |
| pH in 0.01MCaCl <sub>2</sub>         | NA    | NA    | NA    |   | NA    | NA    | NA    |  |
| Organic carbon (g kg <sup>-1</sup> ) | 171.0 | 153.0 | 130.0 |   | 163.0 | 159.6 | 129.3 |  |
| Total nitrogen (g kg <sup>-1</sup> ) | 9.5   | 8.1   | 6.5   |   | 8.15  | 7.6   | 5.91  |  |
| Phosphorus (mg kg <sup>-1</sup> )    | 2.85  | 2.52  | 1.81  |   | 2.15  | 1.82  | 1.75  |  |
| Potassium (cmol kg <sup>-1</sup> )   | 1.21  | 1.02  | 0.95  |   | 1.01  | 1.15  | 1.26  |  |
| Sodium (cmol kg <sup>-1</sup> )      | 0.08  | 0.06  | 0.02  |   | 1.09  | 1.05  | 0.08  |  |

Source: Soil Analytical Laboratory, Department of Agronomy, Ahmadu Bello University, Zaria.

RHB - Rice husk biochar, GSB - Groundnut shell biochar, WSB - Wood shavings biochar

NA – Not Applicable