DETECTION OF CUCUMBER MOSAIC VIRUS (CMV) FROM BAMBARA (VIGNA SUBTERRANEAN (L) VERDC.)

B. Muhammad 1 * and I. Muhammad 2

- 1 Department of Crop Protection, Faculty of Agriculture, Ahmadu Bello University, PMB 1044, Zaria.
 - 2 Department of Botany, Faculty of Science, Gombe State University, PMB 127, Tudun Wada, Gombe.

abuidris24@gmail.com +234 803459 1888

ABSTRACT

Cucumber mosaic virus (CMV) has the widest host range of all known plant viruses. A viral and virus-like symptom of yellowing, leaf distortion, mottling, vein clearing and stunted growth were observed on Bambara groundnut undergoing a breeding trial at a research field of University Putra Malaysia (UPM). Ten infected plants were screened for CMV using reverse transcription-polymerase chain reaction (RT-PCR) with CMV coat protein (CP) genespecific primers. The results showed that the causal organism was CMV from two samples tested. The Bambara seeds were collected and transported to Malaysia from Nigeria. Hence, there is the possibility of seed transmission or infection by other CMV-infected crops around the research field.

Keywords: Virus, infection, Fabaceae, Cucumber mosaic virus, Bambara groundnut

INTRODUCTION

Bambara groundnut (Vigna subterranea (L.) Verdc) is an indigenous African crop of the Fabaceae family and the most important pulses grown in the continent. It is very easy to be cultivated but suffered negligence over the decades (Udeh et al., 2020). It has two botanical varieties, cultivated and wild types, Vigna subterranea var. subterranean and V. subterranean var. spontanea, respectively (Aviara and Lawal, 2013; Dike, 1997; Thottappilly and Rossel, 1997). The plant has very high adaptability to harsh environmental conditions and it is grown mostly as a mixed crop predominantly with cowpea, maize, sorghum or groundnut (Thottappilly and Rossel, 1997) and usually cultivated as a subsistence crop by small-scale female farmers (Uddin et al., 2017). Bambara

groundnut serves as a good source of nutrients such as carbohydrates (65%), protein (25.2%), lipids (6%) when weighed in its dried form (Rowland, 1993; Amarteifio et al., 1997). The crop has nutraceutical and antimicrobial potentials and serves as a source of livelihood to many rural farmers in Sub-Saharan African countries (Udeh et al., 2020). Like other crops, Bambara groundnut is susceptible and is ravaged by pests and diseases, including Coleoptera, Diptera, and Hymenoptera, among other insect Orders (Dike, 1997; Uddin II et al., 2017). Fungal diseases have been reported to infect the Bambara groundnut crop (Ouoba et al., 2019), as well as viral diseases such as Cowpea mild mottle virus (CMMV), Cowpea mosaic virus and Cucumber mosaic virus (CMV).

CMV, or cucumber mosaic virus, has been na med one of the top ten most economically sign ificant plant viruses. This is due to its capacity to adapt to various environments and new hosts and its possession of the largest host range among all the known plant viruses (Scholthof et al., 2011). The virus is the type species of *Cucumovirus* genus in Bromoviridae family, with single-stranded RNA wrapped in a tripartite genome can cause yield loss of up to 30% (Zitter and Murphy, 2009). CMV infects a wide range of crop species, including monocots and dicots from over 100 plant families, and has a global (Bald-Blume distribution et al.. 2017: Roossinck, 2001; Zitter and Murphy, 2009). The most common techniques employed for the CMV identification are serological- and nucleic acid-based methods through ELISA and RT-PCR (Eni et al., 2013). The virus is easily managed by employing sound cultural and agronomic techniques, such as the use of virus-free seeds, the exclusion of weed hosts and other reservoir hosts, vector elimination, rouging of affected plants, and quarantine procedures (Nono-Womdim, 2001). study was conducted to identify virus(es) inciting virus and virus-like symptoms of vellowing and mottling observed on Bambara groundnut plants in a research field at the University Putra Malaysia (UPM) Serdang, Selangor, Malaysia.

Materials and methods

Ten symptomatic and asymptomatic leaf samples, five from each displaying virus and virus-like symptoms, were collected in a research field in the Faculty of Agriculture of the University Putra Malaysia in 2019. The samples were taken to the Virology lab in the Department of Plant Protection for viral disease diagnosis. The samples were surfacedsterilized, using 1 % NaOCl and their nucleic acid, ribonucleic acid (RNA) was then isolated using TRIzolTM reagent (Thermo Fisher Scientific, Waltham, USA) according to the manufacturer's instruction. The RNA was converted to complementary deoxynucleic acid (cDNA) using SensiFASTTM cDNA synthesis kit (Bioline, UK) as follows in a total reaction volume of 10 µL, containing 1 μL total RNA, 4 μL 5×TransAmp buffer, 1 μL reverse transcriptase and 14 µL nuclease-free water. The mixture was prepared on ice and briefly centrifuged using a min centrifuge for 5 s. The reaction was performed by heating at 25°C for 10 min, 42°C for 15 min, 48°C for 15 min, 85°C for 5 min and held at 4°C in a thermal cycler, Master Cycler (Eppendorf, Germany). The cDNA was stored at -20°C until further use. Polymerase chain reaction (PCR) was carried out using the CMVspecific primers designed by Wylie et al. (1993) (Table 1) using of 2×AmpMasterTM Taq (Korea) PCR master mix. Each reaction tube contained 1 µL each of forward and reversed primers, 10 µL of 2×AmpMasterTM Taq, 3 µL cDNA template and nuclease-free water to a final volume of 20 µL. The reaction mixture was subjected to the following cycling regimes in the aforementioned thermal cycler: initial denaturation at 95°C for 2 min, then 35 cycles of denaturation at 95°C for 20 s, annealing at 60°C for 10 s, extension at 72°C for 30 s, and then a final extension of 72°C for 5 min.

Table 1: Primers designed by W	Vvlie <i>et al</i> . (19	993) for the detection o	of all CMV subgroups

		Expected amplicon		
Primer	Sequence	size (bp)	Reference	
CMV1F	5'-TATGATAAGAAGCTTGTTTCGCG-3'		Wylie et al.	
		482 - 488	(1993)	
CMV2R	5'-GCCGTAAGCTGGATGGACAA-3'			

Agarose (2 g) was mixed with 100 mL $1\times$ TBE buffer (2% w/v). Five μ L of PCR product (500 bp) was loaded onto each well with a 100 bp DNA ladder (Smobio, Taiwan) and run for 25 min at 90 V. The gel was

stained in ethidium bromide solution (10 mg/mL) for 10 min and then de-stained with distilled water for 5 min, visualized using Gel documentation system (Gel Doc XR, BioRad, USA) and the image captured and recorded.

Results

Two of the samples (20 %) were found to be CMV-positive. The symptoms observed on the first one was mottling, stunted growth, vein clearing and chlorosis (Plate 1A). In comparison, the last one had mild mottles and chlorosis on many leaves of the plant (Plate 1B).

Plate 1: Symptoms of CMV infection in Bambara groundnut (A) Stunting, mottling, chlorosis and vein clearing (B) Mild mottling and chlorosis.

The PCR result showed the expected amplicon of approximately 500 bp when resolved on 2% Agarose gel, confirming the presence of CMV in the test sample as showed by Wylie *et al.* (1993) (Plate 2).

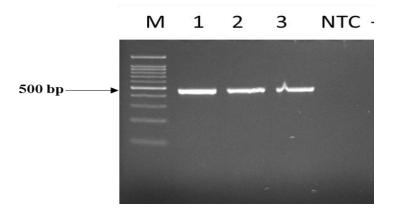


Plate 2: Agarose gel photo showing the two 500 pb of CP gene CMV from Bambara groundnuts M: 100 bp DNA ladder (Smobio, Taiwan) 1: CMV positive control 2: Bambara sample 1 and 3: Bambara sample 2 NTC: No-template control.

Discussion

Cucumber mosaic virus (CMV) was detected from the two samples observed to show virus and virus-like symptoms. Nucleic acid-based technique, PCR with specific primers which amplify 500 bp in the coat protein of the CMV, was used to determine the presence of the virus in the samples. Wylie et al. (1993) have used this pair of primers over the decades to detect all CMV subgroups. The symptom characteristics of mottling, stunting and yellowing observed were induced by CMV infection on Bambara groundnuts. The seeds used in the propagation of the Bambara groundnut in this study were imported from Nigeria, and it was found that eight viruses were found infecting the plant in Nigeria by Thottappilly and Rossel (1997) when screened the plant against some viruses thought to infect the plant, CMV was among the viruses identified during their study. If the virus is

seed transmissible, it could then be the imported seeds that spread the virus, as the virus was reported to be seed-transmissible (Ali and Kobayashi, 2010). On the other hand, CMV has been very much present in Malaysian Agroecology over the years, ravaging all forms of crops, vegetables, spices, food and ornamental crops Muhammad et al., 2021; (Mazidah et al., 2012; Saad et al., 2019; Saad, 2012) and the nature of the virus itself having the widest host range of all the known plant-infecting viruses to date (Bald-Blume et al., 2017; Eni et al., 2013; Scholthof et al., 2011). More than 80 aphid species could transmit the virus in a non-persistent manner (Bald-Blume et al., 2017); hence, the virus could have been transmitted to the Bambara groundnut by any three methods as mentioned above.

CONCLUSION

Cucumber mosaic virus (CMV) was detected from Bambara groundnut using the

RECOMMENDATION

Based on the result obtained in this study, it will be very good to conduct a seed transmission experiment to ascertain the possibility of CMV spread in Bambara groundnut found to be CMV-positive in this study and that mixed infection scenario should be investigated in further studies.

REFERENCES

- Ali, A., and Kobayashi, M. (2010). Seed transmission of Cucumber mosaic virus in pepper. *Journal of Virological Methods*, 163(2), 234–237.
- Amarteifio, J. O., Sawula, G., and Gibbons, M.R.D. (1997). Comparison of four landraces of Bambara groundnut. *Trop. Sci.*, 37:143-145.
- Aviara, N. A., and Lawal, A. (2013). Bambara groundnut processing, storage and utilization in. north eastern Nigeria. *Cont J. Eng Sc*, 8(1), 28-36.
- Bald-Blume, N., Bergervoet, J. H. W., and Maiss, E. (2017). Development of a molecular assay for the detection of Cucumber mosaic virus and the discrimination of its subgroups I and II. *Journal of Virological Methods*, 243, 35–43.
 - https://doi.org/10.1016/j.jviromet.2017.0 1.011
- Dike, M. C. (1997). Effect of insect pests on pod and seed yields of bambara groundnut, vigna subterranea l. verde in nigeria. *International Journal of Pest Management*, 43(3), 191–192.

- technique of RT-PCR from plants showing mottling, yellowing, stunting and chlorosis symptoms.
 - https://doi.org/10.1080/09670879722866
- Eni. A.O., Lava Kumar, P., Asiedu, R., Alabi,
 O.J., Naidu, R.A., Hughes, J., Rey, M. E.
 C. (2013). Characterization of cucumber mosaic virus isolated from yam (
 Dioscorea spp.) in West Africa. *African Journal of Biotechnology*, 12(22), 3472–3480.
- Mazidah, M., Yusoff, K., Habibuddin, H., Tan, Y. H., & Lau, W. H. (2012). Characterization of cucumber mosaic virus (CMV) causing mosaic symptom on Catharanthus roseus (L.) G. Don in Malaysia. *Pertanika Journal of Tropical Agricultural Science*, 35(1), 41–53.
- Muhammad, B., Vadamalai, G., Ling, K.L. and Hong, L.W. (2021). Detection andcharacterization of *Cucumber mosaic virus* (CMV) infecting ginger (*Zingiber officinale*Roscoe) in Malaysia. *International Journal of Sciences: Basic and Applied Research* 57(1): 9-15.
- Nono-Womdim, R. (2001). An overview of major virus diseases of vegetable crops in Africa and some aspects of their control. *Plant Virology in Sub-Saharan Africa*, 213–232.
- Ouoba, A., Zida, E. P., Soalla, R. W., Bangratz, M., Essowè, P., Konaté, M. N., Konaté, M. N., Nandkangré, H., Ouédraogo, M., & Sawadogo, M. (2019). Molecular characterization of the main fungi associated to Bambara groundnut foliar diseases in Burkina Faso. *Journal of Applied Biosciences*, 133(1), 13574.

- https://doi.org/10.4314/jab.v133i1.9
- Roossinck, M. J. (2001). Pathogen profile Cucumber mosaic virus, a model for RNA virus evolution. *Molecular Plant Pathology*, 2(2), 59–63.
- Rowland, J.R.J. (1993). Bambara Groundnut. In: Rowland J.R.J. (ed). Dryland Farming in Africa, Macmillan Ltd., London, pp. 278-282.
- Saad, K. A., Mohamad Roff, M. N., Hallett, R. H., & Abd-Ghani, I. B. (2019). Effects of cucumber mosaic virus-infected chilli plants on non-vector Bemisia tabaci (Hemiptera: Aleyrodidae). *Insect Science*, 26(1), 76–85. https://doi.org/10.1111/1744-7917.12488
- Saad, N. B. (2012). Incidence and differentiation of Cucumber mosaic virus (CMV) isolates in Peninsular Malaysia.
 MSc thesis submitted to the University Putra Malaysia.
- Scholthof, K. B. G., Adkins, S., Czosnek, H., Palukaitis, P., Jacquot, E., Hohn, T., Hohn, B., Saunders, K., Candresse, T., Ahlquist, P., Hemenway, C., & Foster, G. D. (2011). Top 10 plant viruses in molecular plant pathology. In *Molecular Plant Pathology* (Vol. 12, Issue 9, pp. 938–954).

- Thottappilly, G., & Rossel, H. W. (1997). Identification and characterization of infecting bambara groundnut subterranea) in nigeria. (vigna **International** Journal of Pest Management, 43(3), 177–185. https://doi.org/10.1080/09670879722864 5
- Udeh, Ebere Lovelyn., Nyila, Monde, A., Kanu, Sheku, A. (2020). Nutraceutical and antimicrobial potentials of Bambara groundnut (Vigna subterranea): A review. *Helyon*, 6(e5205), 2–5.
- Wylie, S., Wilson, C. R., Jones, R. A. C., & Jones, M. G. K. (1993). A polymerase chain reaction assay for cucumber mosaic virus in lupin seeds. *Australian Journal of Agricultural Research*, *44*(1), 41–51. https://doi.org/10.1071/AR9930041
- Zitter and Murphy. (2009). Cucumber mosaic. *Plant Health Instructor*, 2–3. https://doi.org/10.1094/PHI-I-2009-0518-01